

Community Energy Plan

Volume 3 North Dufferin Community Centre, Honeywood Arena Energy Audit Report

Township of Mulmur

June 2020

North Dufferin Community Centre (Honeywood Arena) CEP Volume 3: Energy Audit Report

Township of Mulmur 758070 2 Line East Mulmur, ON L9V 0G8

R.J. Burnside & Associates Limited 15 Townline Orangeville ON L9W 3R4 CANADA

June 2020 300041822.0000

Distribution List

No. of Hard Copies	PDF	Email	Organization Name
-	Yes	Yes	Initial Draft Submission to Township of Mulmur

Record of Revisions

Revision	Date	Description
-	December 6, 2019	Initial Draft Submission to Township of Mulmur
	June 5, 2020	Final Submission to Township of Mulmur

R.J. Burnside & Associates Limited

Mn Report Prepared By: <

Spencer Brown, P.Eng., C.E.A. Project Engineer SB:kl

Peter Mensinga,⁴ M.A.Sc., P.Eng. Manager, Building Restoration PM:kl

Report Reviewed By:

minie Garisto

Dominic Garisto, C.E.T., LET Mechanical Technologist DG:kl

JLF. C

Lyle Parsons, B.E.S. Vice President Environment LP:kl

Executive Summary

Introduction: Project Scope, Objective and Strategies

R.J. Burnside & Associates Limited (Burnside) was engaged by the Township of Mulmur (Mulmur) to develop a Community Energy Plan (CEP). As part of that CEP a number of demonstration projects were included to show the benefits of energy conservation. This particular component of the study was to conduct an Energy Audit (EA) of the North Dufferin Community Center building in Honeywood. Its address is 706114 County Rd 21, Mulmur, ON, L0N1H0. These kind of EAs can be conducted at any building and are case specific to the buildings being assessed.

Fourteen separate Energy Efficiency Measures (EEMs) were identified with implementation costs and annual energy savings estimates. Eight Energy Efficiency Measures (EEMs) recommendations were identified with implementation costs and annual energy savings estimates. The annualized savings of all recommendations totals \$21,996.00 (at projected energy prices). If fully implemented, the average weighted payback period from annual energy savings for these EEMs is estimated to be 8.0 years, and simple payback 5.4 years. A significant reduction in electricity and fuel usage would be achieved if recommendations were implemented. Details are outlined in the tables below.

EEM No.	Energy Efficiency Measure	Measure Type	Approx. Annual Savings	Net Estimated Costs	Simple Payback Years
1	LED Lighting – Interior Lights	Upgrade Building Systems	\$216.00	\$1,105.00	5.1
2	LED Lighting – Exterior Parking Lot Lights	Upgrade Building Systems	\$160.00	\$790.00	4.9
3	Install Programmable Thermostats	Upgrade Building Systems	\$750.00	\$400.00	0.5
4	Building Envelope Analysis – Roof Insulation	Upgrade Building Envelope	\$1,780.00	\$8,500.00	4.8
7	Water Conservation -Low Flow Fixtures	Upgrade Building Systems	\$490.00	\$1,800.00	3.7
10	New Zamboni Hot Water System	Upgrade Building Systems	\$1,165.00	\$8,000.00	6.9
12	DDC Controller	Upgrade Building Systems	\$5,000.00	\$41,154.00	8.2
14	Rooftop Solar	Renewable Technology	\$12,435.00	\$114,375.00	9.2
		Totals	\$21,996.00	\$176,124.00	5.4

|--|

Table 2: Summary of Utility Reductions from Recommendations

	Electricity	Oil	GHG Reduction
	kWh	L	MTCDE
Total 2017/2018 Utility Consumptions	300,000	18,221	49
Percentage Reduction in Utility Consumption	90%	24%	24%
Total Projected Utility Consumptions	31,274	13,824	37

R.J. Burnside & Associates Limited

200605_Vol 3 North_Dufferin_Comm_Centre_Energy_Audit 041822.docx

300041822.0000

Results and Recommendations with Climate Action Incentive Fund (CAIF)

There is a program expected to be announced from the Federal government to provide incentives to Municipalities for energy efficiency and renewable energy projects. A similar program for private businesses was operational in 2019 providing 25% incentive on capital costs. With the capital incentive one additional measure was recommended for a total of nine measures, and overall paybacks were reduced. The tables below outline the revised paybacks for projects, should this program be launched.

The annualized savings of all recommendations with the CAIF Incentive totals \$25,706.00 (at projected energy prices). Details are outlined in the tables below. There could be further funding available from programs like FCM's Green Municipal Fund Capital Project: Retrofit of Municipal Facilities.

EEM No.	Energy Efficiency Measure	Measure Type	Approx. Annual Savings	CAIF Incentive	Net Estimated Costs	Simple Payback Years
1	LED Lighting – Interior Lights	Upgrade Building Systems	\$216.00	\$374.00	\$731.00	3.4
2	LED Lighting – Exterior Parking Lot Lights	Upgrade Building Systems	\$160.00	\$223.00	\$568.00	3.5
3	Install Programmable Thermostats	Upgrade Building Systems	\$750.00	\$100.00	\$300.00	0.4
4	Building Envelope Analysis – Roof Insulation	Upgrade Building Envelope	\$1,780.00	\$2,125.00	\$6,375.00	3.6
7	Water Conservation -Low Flow Fixtures	Upgrade Building Systems	\$490.00	\$450.00	\$1,350.00	2.8
10	New Zamboni Hot Water System	Upgrade Building Systems	\$1,165.00	\$2,000.00	\$6,000.00	5.2
11	Desuperheater	Upgrade Building Systems	\$3,710.00	\$10,625.00	\$31,875.00	8.6
12	DDC Controller	Upgrade Building Systems	\$5,000.00	\$11,250	\$29,904	6.0
14	Rooftop Solar	Renewable Technology	\$12,435.00	\$28,594.00	\$85,781.00	6.9
		Totals	\$25,706.00	\$55,740.00	\$162,884.00	4.5

Table 3: North Dufferin Community Centre Energy Efficiency Recommendations with CAIF Funding

Note: Simple payback is an average of all projects

Township of Mulmur

CEP Volume 3: Energy Audit Report June 2020

Energy Audit Strategies and Methods

This report review includes all the energy and estimated cost saving measures as follows with regards to both functionality and code upgrades:

- Building Automation Systems (BAS);
- Boilers, furnaces, heaters;
- Toilet and fixture replacement;
- LED lighting;
- Roof insulation;
- Rooftop solar; and
- Heat Recovery.

The energy audit method was broken down into four phases which are described as follows:

Baseline Development

Gathering all pertinent data: billing information histories, drawings, specifications, engineering report, conduct site visit and interview building operators, generate equipment list and identify potential energy saving measures. Interview with building operators, generate equipment list and conduct site inspection for individual system to identify the potential energy saving measures.

Analysis and Energy Efficiency Measures (EEMs)

Collect all historic data for utility and energy consumption simulation, and building assessment report(s), drawings and other related information (provided by the Township). Provide an analysis of potential Energy Efficiency Measures for conventional and renewable energy technologies, taking into consideration of the building behavior, operational schedule changes and deficiencies. Review and calculation energy consumption before and after a potential retrofit.

Draft and Final Report

Produce the draft energy audit report and for the North Dufferin Community Centre review and incorporate comments and suggestion for the final report.

Table 4: North Dufferin Community Centre Energy Efficiency Details

EEM Measure Category		Measure Type	Energy Efficiency Measure	Electricity	Oil	GHG Reduction	Total Savings per	Original	Incentives	Net Costs	Cost (\$) /	Simple Payback
				kWh	L	MTCDE	Year	COST			WICDE	es Years
1	No-Cost/Low-Cost	Upgrade Building Systems	EEM 1 - LED Lighting – Interior Lights	1,300	0	0	\$216.00	\$1,495.00	\$390.00	\$1,105.00	\$0.00	5.1
2	No-Cost/Low-Cost	Upgrade Building Systems	EEM 2 - LED Lighting – Exterior Parking Lot Lights	964	0	0	\$160.00	\$890.00	\$100.00	\$790.00	\$0.00	4.9
3	Capital Investment	Upgrade Building Systems	EEM 3 - Install Programmable Thermostats	0	1000	3	\$750.00	\$400.00	\$0.00	\$400.00	\$0.00	0.5
4	Capital Investment	Upgrade Building Envelope	EEM 4 – Building Envelope Analysis – Roof Insulation	0	2144	6	\$1,780.00	\$8,500.00	\$0.00	\$8,500.00	\$1,485.00	4.8
5	Capital Investment	Upgrade Building Envelope	EEM 5 – Building Envelope Analysis – New Doors	0	136	0	\$103.00	\$1,500.00	\$0.00	\$1,500.00	\$4,131.00	14.6
6	Capital Investment	Upgrade Building Envelope	EEM 6 – Building Envelope Analysis – New Windows	0	1075	3	\$806.00	\$38,000.00	\$0.00	\$38,000.00	\$13,239.00	47.1
7	Capital Investment	Upgrade Building Systems	EEM 7 – Water Conservation -Low Flow Fixtures	0	571	2	\$490.00	\$1,800.00	\$0.00	\$1,800.00	\$1,181.00	3.7
8	Capital Investment	Upgrade Building Systems	EEM 8 – Upgrade Furnace to Higher Efficiency	0	125	0	\$104.00	\$7,000.00	\$0.00	\$7,000.00	\$20,974.00	67.5
9	Capital Investment	Upgrade Building Systems	EEM 9 - Drain Water Heat Recovery	0	367	1	\$304.00	\$4,500.00	\$0.00	\$4,500.00	\$4,592.00	14.8
10	Capital Investment	Upgrade Building Systems	EEM 10 New Zamboni Hot Water System	0	682	2	\$1,165.00	\$8,000.00	\$0.00	\$8,000.00	\$4,393.00	6.9
11	Capital Investment	Upgrade Building Systems	EEM11 Desuperheater	0	4,470	12	\$3,710.00	\$42,500.00	\$0.00	\$42,500.00	\$3,561.00	11.5
12	Capital Investment	Upgrade Building Systems	EEM12 DDC Controller	38,462	0	0	\$5,000	\$45,000	\$3,846	\$41,154	\$0	8.2
13	Capital Investment	Upgrade Building Systems	EEM13 Electric Desiccant Humidifier	19,231	0	0	\$2,500	\$40,000	\$1,923	\$38,077	\$0	15.2
14	Capital Investment	Renewable Technology	EEM14 Rooftop Solar	228,000	0	0	\$12,435.00	\$114,375.00	\$0.00	\$114,375.00	\$0.00	9.2

Table 5: Glossary of Terms

Term	Description
Watt (W)	Unit of Power in Joules/s.
Kilowatt (kW)	1000 Watts
Megawatt (MW)	1000 kilowatts
ekWh	Equivalent Kilo-watt hours, standard unit of energy consumption to compare energy sources.
Watthour (Wh)	A measure of power over time – 1 Wh is 1W power consumption over 1 hour.
Kilowatt hour (kWh)	1000 Wh
Megawatt Hour (MWh)	1000 kWh
British Thermal Unit (BTU)	A measure of energy.
kBTU	One thousand BTUs.
m ³	Meter cubed, a unit of volume.
ECI	The Energy Cost Index (ECI) of the building (expressed in dollars per floor area per year).
GHG	Green house fuel oil.
Source EUI	The Energy Utilization Index (EUI) of the Source (expressed in kBtu/ft ² [MJ/m ²] per year).
Site EUI	The Energy Utilization Index (EUI) of the Site (expressed in kBtu/ft ² [MJ/m ²] per year).
Demand Charge	Charge from Hydro distribution companies based on the capacity amount allocated to your building.
Peak Demand	The largest power consumption for a system, usually over a 1 year time period.
EEM	Energy Efficiency Measure.
ECM	Energy Conservation Measure.
Blended Rate	A rate \$/kWh for electricity including demand charges, regulatory charges, supply charges, global adjustment, and taxes.
Heating Degree Day (HDD)	The number of degrees that a day's average temperature is below 18 degrees Celsius.
Net Present Value (NPV)	The value of all the future cash flows added up and multiplied with the discount rate.
Discount Rate	Often considered the hurdle rate this is the rate which an entity can receive on other investments. A discount rate is used to discount future cash flows to measure project risk.
Simple Payback	The time in years it takes to recoup an initial capital investment. Comparing paybacks of different investments provides a good way to make financial decisions.
Return on Investment (ROI)	The ROI is the net profit of an investment divided by the capital cost. Comparing ROI's of different investments provides a good way to make financial decisions.

Table of Contents

Table	of Co	ntents			7
1.0	Ener	gy Utili	ty Analy	sis	11
	1.1	Audit S	Scope and	d Methodology	11
		1.1.1	Prelimin	ary Analysis	11
		1.1.2	Audit Sit	e Investigation	11
		1.1.3	Water C	onsumption Review	11
	1.2	Descrip	otion of th	ne Site and Building	11
	1.3	Prelimi	nary End	Use Analysis	13
		1.3.1	Billing D	ata Review	13
			1.3.1.1	Electricity Rates	13
		1.3.2	Fuel Oil	Rates	14
		1.3.3	Propane	Rates	14
		1.3.4	Water R	ates	14
		1.3.5	Monthly	Energy Usage	14
		1.3.6	Fuel Oil	Adjusted Baseline for Heating	18
		1.3.7	Electricit	y Adjusted Baseline	18
		1.3.8	Breakdo	wn of Energy Charges and Consumption	19
		1.3.9	End Use	Breakdown	20
		1.3.10	Energy I	Benchmark	21
2.0	Build	ling En	velope		22
	2.1	Exterio	r Claddir	ig System	22
	2.2	Roofing	g		24
3.0	Build	ling Sys	stems		26
	3.1	Lighting	g System	IS	26
		3.1.1	Interior L	_ighting	26
		3.1.2	Exterior	Lighting	28
	3.2	Mecha	nical Sys	tems	28
		3.2.1	HVAC S	ystem	28
			3.2.1.1	Heating	28
			3.2.1.2	Ventilation	29
			3.2.1.3	Cooling	29
		3.2.2	Plumbin	g and Fixtures	29
		3.2.3	Domesti	c Hot Water	31
		3.2.4	Zambon	i Hot Water	31
		3.2.5	Ice Refri	geration System	32
4.0	Οςςι	ipancy	Schedul	e	33
5.0	Ener	gy Effic	iency M	easures	34
	5.1	No-Cos	st/Low-C	ost Measures	34
		5.1.1	EEM 1 -	- Interior Lighting Analysis – LED Lighting	35
		5.1.2	EEM 2 -	- Exterior Parking Lot Lights - LED Lighting	35
		5.1.3	EEM 3 -	- Programmable Thermostats	36
	5.2	Capital	Investm	ent Measures	37
		5.2.1	EEM 4 -	- Building Envelope Analysis – Roof Insulation	37
		5.2.2	EEM 5 -	- Building Envelope Analysis – New Doors	37

Township of Mulmur

CEP Volume 3: Energy Audit Report June 2020

		5.2.3	EEM 6 - Building Envelope Analysis - New Windows	
		5.2.4	EEM 7 - Water Conservation - Low Flow Fixtures	
		5.2.5	EEM 8 – Upgrade Furnace to Higher Efficiency Furnace	
		5.2.6	EEM 9 – Drain Water Heat Recovery	
		5.2.7	EEM 10 - New Zamboni Hot Water System	
		5.2.8	EEM 11 – Desuperheater - Heat Recovery	
		5.2.9	EEM 12 – DDC Controller on Refrigeration System	41
		5.2.10	EEM 13 – Electric Desiccant Dehumidifier	41
	5.3	Distribu	Ited Generation/Renewable Energy Measures	42
		5.3.1	EEM 14 - Rooftop Solar with Net Metering Connections	
6.0	Incer	ntive Pr	ograms	
	6.1	Climate	e Action Initiative Fund	43
	6.2	EEMs I	Recommended with CAIF	44
	6.3	FCM R	etrofit of Municipal Facilities	45
7.0	Sum	mary		

Tables

Table 1:	North Dufferin Community Centre Energy Efficiency Recommendations	2
Table 2:	Summary of Utility Reductions from Recommendations	2
Table 3:	North Dufferin Community Centre Energy Efficiency Recommendations with CA	١F
I	Funding	3
Table 4:	North Dufferin Community Centre Energy Efficiency Details	5
Table 5:	Glossary of Terms	6
Table 6:	North Dufferin Community Centre Building Information	.11
Table 7:	North Dufferin Community Centre Electricity Charges	.13
Table 8:	Hydro One Charges General Service Greater than 50 kW	.14
Table 9:	Fuel Oil Charges	14
Table 10:	North Dufferin Community Centre Electricity Consumption Summary	.15
Table 11:	Average m ³ Consumption Per HDD	18
Table 12:	Adjusted Fuel oil Use Baseline	18
Table 13:	Combined kWh Breakdown for North Dufferin Community Centre	.20
Table 14:	Occupancy Schedule	34
Table 15:	North Dufferin Community Centre Energy Efficiency Recommendations with	
	CAIF Funding	44
Table 16:	North Dufferin Community Centre Energy Efficiency Recommendations	.45
Table 17:	North Dufferin Community Centre EEMs not Recommended	.46
Table 18:	Summary of Utility Reductions for Recommendations	.46

Figures

Figure 1: North Dufferin Community Centre 2016-2018 Hydro Usage	16
Figure 2: North Dufferin Community Centre 2016-2018 Fuel Oil Usage	16
Figure 3: North Dufferin Community Centre 2016-2018 Estimated Propane Usage	17
Figure 4: North Dufferin Community Centre 2016-2018 Estimated Fuel Usage	17
Figure 5: North Dufferin Community Centre 2018 Total Energy Usage (kWh)	19
Figure 6: North Dufferin Community Centre Total Energy Cost 2016 to 2017	19
Figure 7: Total kWh by End Use for North Dufferin Community Centre	21
Figure 8: Total ekWh/ft ² by End Use for North Dufferin Community Centre	22
Figure 9: North Dufferin Community Centre Exterior Wall Assembly	23
Figure 10: Common Area Window	23
Figure 11: Common Area Single Pane Window to Unheated Arena	24
Figure 12: Roof Over Rink	25
Figure 13: Changeroom Lighting Example	26
Figure 14: Rink Lighting	27
Figure 15: Auditorium Lighting	27
Figure 16: HPS Parking Lot Lights	28
Figure 17: LED Parking Lot Lights	28
Figure 18: Common Area Oil Furnaces	29
Figure 19: Typical Changeroom	30
Figure 20: Typical Sink Fixtures	30
Figure 21: Domestic Hot Water Tank	31
Figure 22: Zamboni Hot Water Storage Tank	32
Figure 23: Zamboni Hot Water Heating Tank and Electrical Heating Wall Mount	32
Figure 24: Ice Plant Compressors	33
Figure 25: Ice Plant	33
Figure 26: Drain Water Heat Recovery System	39

Appendices

Appendix ADataAppendix BCalculationsAppendix CBenchmark ReportAppendix DDrawings

Township of Mulmur

CEP Volume 3: Energy Audit Report June 2020

Disclaimer

© 2021, Township of Mulmur. All Rights Reserved. The preparation of this plan was carried out with assistance from the Government of Canada and the Federation of Canadian Municipalities. Notwithstanding this support, the views expressed are the personal views of the authors, and the Federation of Canadian Municipalities and the Government of Canada accept no responsibility for them.

In the preparation of the various instruments of service contained herein, R.J. Burnside & Associates Limited was required to use and rely upon various sources of information (including but not limited to: reports, data, drawings, observations) produced by parties other than R.J. Burnside & Associates Limited. For its part R.J. Burnside & Associates Limited has proceeded based on the belief that the third party/parties in question produced this documentation using accepted industry standards and best practices and that all information was therefore accurate, correct and free of errors at the time of consultation. As such, the comments, recommendations and materials presented in this instrument of service reflect our best judgment in light of the information available at the time of preparation. R.J. Burnside & Associates Limited, its employees, affiliates and subcontractors accept no liability for inaccuracies or errors in the instruments of service provided to the client, arising from deficiencies in the aforementioned third-party materials and documents. Furthermore, energy savings projections, cost estimates and payback periods are estimates and could vary when implemented.

R.J. Burnside & Associates Limited makes no warranties, either express or implied, of merchantability and fitness of the documents and other instruments of service for any purpose other than that specified by the contract.

1.0 Energy Utility Analysis

1.1 Audit Scope and Methodology

R.J. Burnside & Associates Limited (Burnside) conducted a site visit at the North Dufferin Community Centre on July 1, 2019. Following the site visit, analysis was performed by Burnside and included a review of mechanical, electrical, building sciences, energy modelling, and renewable energy. Included in the analysis was a preliminary end use analysis, energy audit, and water consumption review. A review of safety features such as ammonia monitoring equipment was not included in this review.

1.1.1 Preliminary Analysis

The preliminary analysis precedes an audit of a building. During the preliminary analysis the historic utility use, peak demand, and cost were analyzed. A comparison of electricity usage to similar buildings, where available (including the source, size and date of the sample) was completed. Monthly energy use and peak demand was reviewed to identify efficiency or behavioral modification opportunities. Sequence of operations reports, floor plan, mechanical, electrical, architectural, and structural drawings for each of the buildings that were received were reviewed.

1.1.2 Audit Site Investigation

During the site investigation a description of the physical characteristics of the facility, as well as its current condition, state of repair and maintenance, approximate date of last major renovation, age and construction type were reviewed. The major existing electricity-using equipment including lighting, main sources of heating and cooling, their energy consumption and fuel type as well as the manufacturer, model number, age, physical condition and estimated remaining years of service were noted.

1.1.3 Water Consumption Review

The water closets and faucets are manually operated and have not been fully retrofitted to low-flow fixtures. They may be consuming significant amounts of water, typically 6 Litres per flush (LPF) for toilet and 5.7 liters per minute (LPM) for lavatory faucet respectively. No significant water leakage is identified per building operator. An estimate of the base case of water consumption calibrated to annual water bills was completed.

1.2 Description of the Site and Building

Table 6: North Dufferin Community Centre Building Information

Address	706114 Regional Road 21, Mulmur, ON
Building Type	Recreation Facility
Height	Two Floors Above Grade
Parking Description	Outdoor parking spaces
Building Construction Type	Concrete and Wood
Year Constructed	1965
Gross Floor Area (GFA)	27,724 sq. ft.

Building Energy Audit Summary

The following items highlight the key observations of the Energy Audit by subject area.

Energy Audit:	rgy Audit: North Dufferin Community Centre		
Year of Construction	1965		
General Description	The North Dufferin Community Center is an arena, with a two- story community centre complete with an ice rink, auditorium, canteen, changerooms, and viewing area. There are 4 changerooms, and 2 smaller changerooms, 2 male and 2 female washrooms. There is a community hall and stage on the 2nd floor above the foyer overlooking the arena. There are 2 main entrances both on the west side of the building. The parking lot is on the west side of the building, shared in part with the fire hall to the north. The building is generally occupied from September when ice making ramps up until the end of April with the facility being used sparingly for special events in the summer.		
Building Envelope	Exterior walls are composed of metal siding over insulation and a concrete block back-up wall. Windows are composed of two sets of single pane glazing in metal frames. The Community Centre portion of the building is protected with a flat roof overtop an insulated attic space. The ice rink's is protected by an uninsulated, sloped metal roof with a urethane foam coating to reduce leakage.		
Heating, Domestic Hot Water, and Zamboni Hot Water Systems	The domestic hot water heating consists of 1 John Wood oil- fired tank. Common areas at the front of the arena are heated with 2 oil furnaces and duct work to heat the areas. An electric heater is used at the back maintenance and Zamboni area in the wintertime. The Zamboni Hot Water heating consists of an oil-fired hot water tank that is pumped into an insulated holding tank. The holding tank is circulated by a Grundfos pump and the insulated water heater is kept hot by electrical resistance heating.		
Cooling System	The building doesn't have central cooling system.		
Dehumidification System	The building contains 2 dehumidifiers at opposite corners of the rink.		
Ventilation System	The building is equipped with 2 make-up air unit (MUA) with in- direct fuel oil-fired heaters to supply conditioned (heating only) fresh air in heating season to the common areas in the foyer and the auditorium.		
Lighting System	Interior Lighting: Most common area lighting on the 1st level including the foyer, front entrance, canteen, changerooms, bathrooms, front entrance, hallways, laundry and stair ways has been converted to electronic ballasts and LED tubes. It is estimated about 75% of lights have been switched to LED. However, some areas are still using fluorescent bulbs so there is still an opportunity for savings by implementing a complete conversion.		

Energy Audit:	North Dufferin Community Centre
	Exterior Lighting: Consists of 2 mounted 50 w LED fixtures on front face of building, 1 High-Pressure Sodium (HPS) fixtures on a hydro pole, 1 HPS fixture on the exterior wall and 3 wall-mounted LED fixtures. These exterior lights provide lighting to the building and parking area.
Building Automation System (BAS)	There is currently no BAS system in operation.

1.3 Preliminary End Use Analysis

1.3.1 Billing Data Review

Consumption data for 2016 to 2018 was reviewed for Propane, Fuel oil and Electricity. Water bills and consumption for the last year were also reviewed. The following section describes the various charges and consumption related data and discusses trends in the data and opportunities for recommending Energy Efficiency Measures (EEM).

1.3.1.1 Electricity Rates

Charge	Supplier	Current Cost	Forecast Cost c/kwh
Base Electricity Price	Hydro One	2.430	3.013
Global Adjustment	OEB	9.318	11.555
Delivery	Hydro One	0.127	0.157
Regulatory Charges	OEB	0.004	0.005
Debt Retirement Charge	OEB	0.007	0.008
H.S.T.		13%	13%
Total Cost		13.43	16.65

Table 7: North Dufferin Community Centre Electricity Charges

Electricity rates vary with the Ontario electricity market. Mulmur is currently purchasing energy at an average cost of 2.43 c/kWh. The global adjustment rate varies every month and is difficult to predict a rate going forward. Due to Ontario's Fair Hydro Plan the global adjustment was been reduced. This credit is assumed to continue for the foreseeable future. The global adjustment charge over the past year is currently \$9.32 c/kWh; however, electricity rates are expected to increase. Assuming an average rate of increase of 4% the average increase over the next 10 years is 24%. Therefore, multiplying the current cost by 24% yields a forecasted cost of \$16.65 kwh.

ltem	Rates	Unit of Measure	Rate as of Jan 1, 2019
Electricity	RPP – Tiered Rate, Spot Market or Weighted Average Spot Market	Per kWh*	
	Fixed Monthly Charge	Per Month	\$89.48
	Distribution Volume Charge	Per kW	\$16.0236
Delivery	Transmission Network Charge	Per kW	\$1.6048
	Transmission Connection Charge	Per kW	\$1.0743
	Line Loss Adjustment Factor		\$1.061
	Wholesale Market Service Charge	Per kWh*	\$0.0030
Regulatory	Rural Rate Protection Charge	Per kWh*	\$0.0005
	SSS Administration Charge	Per Month	\$0.25

Table 8: Hydro One Charges General Service Greater than 50 kW

1.3.2 Fuel Oil Rates

Table 9: Fuel Oil Charges

Description	Charge c/L
Average Cost for 2016	63.1
Average Cost for 2017	76.1
Average Cost for 2018	88.0

Current Cost of Fuel Oil 83 c/L.

1.3.3 Propane Rates

Current Cost of Propane .49 c/L.

1.3.4 Water Rates

There is no municipal water at North Dufferin Community Centre. Groundwater is pumped from a well onsite.

1.3.5 Monthly Energy Usage

Monthly energy data was received from Mulmur. Below in Table 11 Hydro and Fuel consumption tables are shown. The total for Hydro is averaging approximately 330,000 kWh per year for 2016 to 2018. Total fuel oil usage averages approximately 12,000 L per year for 2016 to 2018. Total Propane usage averages approximately 6400 L per year.

Table 10: North Dufferin Community Centre Electricity Consumption Summary

North	North Dufferin Community Centre - Utilities Summary												
Year O	Year Over Year Hydro Consumption in kWh:												
	July	August	September	October	November	December	January	February	March	April	Мау	June	Total
2016	9,878	8,145	12,122	55,976	43,820	43,560	53,703	44,870	44,597	29,003	16,762	10,167	372,603
2017	2,228	2,090	7,924	49,805	43,825	44,600	47,558	46,909	42,451	24,154	5,398	1,544	318,486
2018	3,760	1,320	20,381	52,373	43,140	46,680	37,129	33,126	37,440	20,121	1,507	1,940	298,917

Figure 1: North Dufferin Community Centre 2016-2018 Hydro Usage

Electricity usage goes up significantly in the winter months as the ice rink is in full operation. The highest usage being in October when ice is being made, and high through November to March when the ice is being used extensively. The total kWh usage in 2018 was approximately 300,00 kwh which is less than 2016, 2017 and the average of the 3 years. This reduction is assumed to be due in large part to the replacement of lighting within the arena to LED. No other large changes in use have been identified during the audit. The average kWh usage per month in 2018 was approximately 24,910 kWh.

The amount of fuel oil varies year by year and month by month. Fuel oil consumption increases in the winter as fuel oil provides the main source of heat. The average amount of fuel per year is around 12,000 L.

The amount of propane varies year by year and month by month. Propane is used to operate the Zamboni as well as the cooking equipment in the canteen. The average amount of propane used per year is around 6,400 L.

Figure 4: North Dufferin Community Centre 2016-2018 Estimated Fuel Usage

The amount of propane and fuel oil varies year by year and month by month, however the total fuel use over 2016-2018 has remained fairly constant. The total L of fuel usage has ranged from approximately 17,500 in 2016 to 19,400 in 2018 for an average amount of approximately 18,500 L.

1.3.6 Fuel Oil Adjusted Baseline for Heating

The average fuel oil consumption from 2016 to 2018 is 12,065 L. Using 2016 to 2018 data, the heating load can be correlated to Heating Degree Data (HDD) to determine the adjusted baseline for an average year. Taking the total fuel and dividing by the heating degree days (HDD) per year gives an average m³ fuel oil used per HDD as shown in Table 11

Year	Total Fuel Oil (L)	HDD	L/HDD
2016	12841	3,588	3.58
2017	9234	3,734	2.47
2018	14121	4,018	3.51

Table 11: Average m³ Consumption Per HDD

The average L/HDD can be multiplied by the average HDD per year, which for Mulmur in the last 10 years is approximately 3,855¹. This results in 12,293 L which is the fuel oil consumption that would be used in an average year. This can be used as the fuel oil consumption baseline.

Table 12: Adjusted Fuel oil Use Baseline

HDD Average	L/HDD	Adjusted Average Fuel Oil (L)
3,855	3.2	12,293

1.3.7 Electricity Adjusted Baseline

The average kWh usage for North Dufferin Community Centre over the last 3 years is 330,002 kWh per year. However, the 2018 performance is likely more indicative of future performance. Occupancy is assumed to have remained constant for the time-period of analysis. Approximately 50% of common areas have been retrofitted to LED; as well as the arena area significantly reducing electricity and total energy consumption. The 2018 usage was 298,917 kWh therefore an approximation of the 2018 electricity usage of 300,000 kWh will be carried forward as the electricity baseline usage.

¹ Environment and Climate Change Canada "Collingwood Historical Heating Degree Days". November 22, 2017. Accessed November 22, 2017. <u>https://sarnia.weatherstats.ca/metrics/hdd.html</u>

1.3.8 Breakdown of Energy Charges and Consumption

Figure 6: North Dufferin Community Centre Total Energy Cost 2016 to 2017

1.3.9 End Use Breakdown

An end use breakdown for all the different uses within the building was estimated and calibrated to the actual usage from the energy bills.

	Input En	ergy Units					
End Use	Electric	Fuel Oil/Propane	Combined	Combined Energy Use			
	kWh	kWh	kWh	Percent			
Appliances + Canteen	24000	5000	29,000	6%			
Space Heating	15000	72000	87,000	18%			
Fans	10000		10,000	2%			
Lighting - Exterior	2500		2,500	1%			
Lighting - Interior	12000		12,000	3%			
Pumps + Ventilation + Dehumidification	50000		50,000	11%			
Zamboni Hot Water	3500	55000	58,500	12%			
Domestic Hot Water	1000		1,000	0%			
Ice Plant	170000		170,000	36%			
Well & Septic Pump	2000		2,000	0%			
Zamboni & Canteen Propane		40312	40,312	9%			
Plug Loads	10000		10,000	2%			
Total Estimated	300,000	172,312	472,312	100%			
Historical Billing	300,000	172,000	472,000				
Percent of Actual	100.0%	100.2%	100.1%				
Total per ft^2	11.5	6.6	18.0				

Table 13: Combined kWh Breakdown for North Dufferin Community Centre

Figure 7: Total kWh by End Use for North Dufferin Community Centre

1.3.10 Energy Benchmark

An energy benchmark is important to compare building usage to similar buildings as well as comparing current usage to past usage. It is an effective way to identify poorly performing buildings, and to establish a baseline for measuring improvement in energy consumptions for all buildings². A rating has been determined from energy star portfolio manager for North Dufferin Community Centre from details about the buildings, utility bills, and regional and climate data. In Appendix A the score of 86 is shown. This means that the arena is operating in the 86th percentile, compared to other buildings, which means it is operating well. Furthermore, some local data was used to benchmark the building against other local arenas. In Figure 8 summary table is below and a copy of the analysis is in Appendix B.

² Natural Resources Canada "Energy benchmarking: the basics". Government of Canada June 09, 2017, Accessed November 10, 2017. <u>http://www.nrcan.gc.ca/energy/efficiency/buildings/energy-benchmarking/building/18260#details-panel20</u>

Figure 8: Total ekWh/ft² by End Use for North Dufferin Community Centre

Per Survey of Energy Consumption of Arenas 2014³, the Energy Use Index (EUI) Benchmark for similar buildings is 29.9 ekWh/ft². The EUI for North Dufferin Community Centre in 2016 was is 21.3 ekWh/ft². Benchmarking analysis indicates that North Dufferin Community Centre is operating better than average and is in the first quartile relative to the energy efficiency benchmark window. Although, it is operating at a higher energy intensity than Hillsburgh Arena⁴. Currently the Community Centre is operating well from an energy efficiency perspective, however there are still opportunities for energy efficiency, and renewable generation within the arena.

2.0 Building Envelope

2.1 Exterior Cladding System

The building's exterior walls generally consist of a concrete block back-up wall with insulation and metal siding outboard of it. Based on the depth of the window flashing we estimate that insulation is between 100 to 125 mm thick, however destructive openings to confirm the actual thickness were outside the scope of our review.

The windows generally consist of two, single pane operable (horizontal sliding) and fixed windows. The windows appear to be approximately 30 years old and are nearing the end of their service life. The windows separating the Community Centre to the ice rink are single pane in metal frames.

22

³ https://www.nrcan.gc.ca/energy-efficiency/energy-star-benchmarking-commercial-and-institutional-buildings/energybenchmarking-technical-information/building-energy-use-surveys/19454 4 Data from Burnside Energy Conservation Measures for the Hillsburgh and Erin Community Centre Arenas

Figure 9: North Dufferin Community Centre Exterior Wall Assembly

Figure 10: Common Area Window

Figure 11: Common Area Single Pane Window to Unheated Arena

2.2 Roofing

The Community Centre has both a flat roof, located over the community centre, and a sloped roof supported by wood trusses located above the ice rink. The flat roof has an unheated attic space below it that is insulated with 90 mm [3.5 in.] fibreglass batt insulation in ceiling and wall cavities with wood frame construction. The ice rink roof is uninsulated, the Urethane Foam/Gascosil coating is for leak protection rather than thermal insulation.

Township of Mulmur

CEP Volume 3: Energy Audit Report June 2020

Figure 12: Community Centre Attic Space Insulation

Figure 12: Roof Over Rink

3.0 Building Systems

3.1 Lighting Systems

3.1.1 Interior Lighting

Most common area lighting on the first level including the foyer, front entrance, canteen, changerooms, bathrooms front entrance, hallways, laundry and stair ways has been converted to electronic ballasts and LED tubes. It is estimated about 75% of lights have been switched to LED. These retrofits have been completed within the last 3 years. However, some units are still using incandescent, and fluorescent bulbs so there is still a significant opportunity for savings by implementing a complete conversion. The lighting in the rink has been completely converted to LED, and the lighting upstairs in the auditorium is generally still fluorescent. There is no opportunity for improvement in the rink, and in the auditorium, there is limited opportunity as the occupancy of the space is only a few hours per week, not allowing for a benefit to outlay capital.

200605_Vol 3 North_Dufferin_Comm_Centre_Energy_Audit 041822.docx

Figure 13: Changeroom Lighting Example

Township of Mulmur

CEP Volume 3: Energy Audit Report June 2020

Figure 14: Rink Lighting

Figure 15: Auditorium Lighting

27

3.1.2 Exterior Lighting

The lighting on the exterior consists of 2 mounted 50 W LED fixtures on front face of building, 1 High-Pressure Sodium (HPS) fixtures on a hydro pole, 1 HPS fixture on the exterior wall and 3 wall-mounted LED fixtures.

Figure 16: HPS Parking Lot Lights

Figure 17: LED Parking Lot Lights

3.2 Mechanical Systems

3.2.1 HVAC System

3.2.1.1 Heating

Common areas at the front of the arena are heated with 2 oil furnaces and duct work to heat the areas. An electric heater is used at the back maintenance and Zamboni area in the wintertime.

28

Township of Mulmur

CEP Volume 3: Energy Audit Report June 2020

Figure 18: Common Area Oil Furnaces

3.2.1.2 Ventilation

The building is not equipped with Ventilation units. Only the fans within the oil furnaces deliver air to the heated common areas.

3.2.1.3 Cooling

There is large fan that is used rarely for ventilation in the rink area only required for fumes that are present from maintenance activities.

3.2.2 Plumbing and Fixtures

Plumbing is mostly original to the building. The 4 changerooms each generally have 1 toilet, 1 sink, and 1 shower. There is also a men's washroom, a women's washroom, a referee's room and a girls changeroom. Upstairs there is a women's and a men's washroom. Upgrades to low flow showerheads and low flow kitchen and bathroom sinks have not taken place.

Figure 19: Typical Changeroom

Figure 20: Typical Sink Fixtures

3.2.3 Domestic Hot Water

The Domestic Hot Water heating consists of 1 John Wood oil-fired tank.

Figure 21: Domestic Hot Water Tank

3.2.4 Zamboni Hot Water

The Zamboni Hot Water heating consists of an oil-fired hot water tank that is pumped into an insulated holding tank. The holding tank is circulated by a Grundfos pump and the insulated water heater is kept hot by electrical resistance heating. The current hot water system is old and showing signs of wear.

31

Figure 22: Zamboni Hot Water Storage Tank

3.2.5 Ice Refrigeration System

The ice refrigeration system is ammonia based. The primary refrigeration side consists of 2 compressors, 1 cooling tower/condenser, 1 chiller, circulation pumps and piping. The secondary refrigeration side consists of circulation pumps and the arena slab piping. The refrigeration system was replaced in 2009. Typical ammonia-based refrigeration systems last for 30 years⁵. Therefore, only 1/3 into its useable life it was not analyzed for replacement or major retrofit.

Figure 23: Zamboni Hot Water Heating

⁵ https://www.nrcan.gc.ca/energy/efficiency/buildings/research/publications/16002#_Toc364163192

Township of Mulmur

CEP Volume 3: Energy Audit Report June 2020

Figure 24: Ice Plant Compressors

4.0 Occupancy Schedule

Below is the occupancy schedule for North Dufferin Community Centre. Typically, the Arena is used in the winter from September to April and follows this occupancy schedule below.

Table 14:	Occupancy	Schedule
-----------	-----------	----------

Zone Name / Description	Winter Operation of North Dufferin Community Centre Occupancy (Number of People) Per Hour							
Days	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Holiday
0:00 - 1:00								
1:00 - 2:00								
2:00 - 3:00								
3:00 - 4:00								
4:00 - 5:00								
5:00 - 6:00								
6:00 - 7:00							2	2
7:00 - 8:00						2	100	100
8:00 - 9:00						100	100	100
9:00 - 10:00						100	100	100
10:00 - 11:00						100	100	100
11:00 - 12:00						100	100	100
12:00-13:00						100	100	100
13:00-14:00						100	100	100
14:00-15:00						100	100	100
15:00-16:00						100	100	100
16:00-17:00	2	2	2	2	2	100	100	100
17:00-18:00	30	30	30	30	100	125	100	100
18:00-19:00	30	30	30	30	100	125	100	100
19:00-20:00	30	30	30	30	100	125	100	100
20:00-21:00	30	30	30	30	100	125	100	100
21:00-22:00	30	30	30	30	100	125	2	2
22:00-23:00	30	30	30	30	100	125		
23:00-24:00	2	2	2	2	2	2		
Total Showers Estimated	30	12	15	30	30	20	100	
	Note. Filds, every other week to people for o hours in auditorium.							

5.0 Energy Efficiency Measures

5.1 No-Cost/Low-Cost Measures

Please note that savings calculations reflect savings from individual measures only and do not assume that other recommendations have been implemented. Calculations and assumptions used are solely based on the existing equipment and usage schedules.
Budget	Annual Saviı	Annual Utility MTCE Savings		Total Savings/Year	Available Incentives	Payback with	Payback without
COSI	Electricity	Oil				Incentives	Incentives
\$	kWh	L	Metric Tons	\$	\$	Years	Years
1 105	1.300	_	_	216.45	390	5.11	6.91

5.1.1 EEM 1 – Interior Lighting Analysis – LED Lighting

Existing Condition: Inefficient Lighting

Some common area lighting including the foyer, front entrance, changerooms, laundry and stair ways has been converted to electronic ballasts and LED tubes. These retrofits have been completed within the last 3 years. However, some lighting is still fluorescent bulbs so there is still an opportunity for savings by implementing a complete conversion.

Recommendations

Replace existing fluorescent lighting with LED lighting. The replacement LEDs also have a rated lifespan of 45,000 hours versus approximately 20,000 hours for the existing fluorescent lamps, which will help reduce maintenance costs associated with replacing burn outs.

Implementation

Estimate includes the cost for supply of lamps and fixtures and installation. In order to estimate the electric savings assumptions for daily usage were made based on space type. Save on Energy offers incentives for each of these lamps installed and these incentives are included in the price calculations. Further information regarding assumptions and the calculations made for this EEM can be found in Appendix B.

5.1.2 EEM 2 – Exterior Parking Lot Lights - LED Lighting

Budget	Annual Utility Savings		MTCDE	Total Savings	Available Incentives	Payback with	Payback without
COSI	Electricity	Oil		_		Incentives	Incentives
\$	kWh	L	Metric Tons	\$	\$	Years	Years
890	964	-		160	100	5.6	6.2

Existing Condition: Inefficient Lighting

Based on a visual inspection from the ground, the lighting on the exterior consists of 2 mounted 30 W LED fixtures on front face of building, 1 High-Pressure Sodium (HPS) fixtures on a hydro pole, 1 HPS fixture on the exterior wall, and 3 wall-mounted LED fixtures.

Recommendations

Replace existing lighting with LED lighting when the lamps burn out. There is a significant cost for a lift truck rental (\$500 to 600/day) to reach the height of the lights. Therefore, when the lamps need to be replaced it makes sense to replace the remaining halogen lamps with LED. The replacement LEDs also have a rated lifespan of 45,000 hours versus 2,000 hours for the existing halogen lamps, which will help reduce maintenance costs associated with replacing burn outs. Furthermore, a comment was received at a Public Information Consultation that recommended the lights to be turned off at night. If turning off the lights was acceptable from a safety perspective, there would be additional savings from the reduced electricity during nighttime hours.

5.1.3 EEM 3 – Programmable Thermostats

Budget	Annual Savir	Utility ngs	MTCDE	Total Savings	Available Incentives	Payback with	Payback without
COSI	Electricity	Oil				Incentives	Incentives
\$	kWh	L	Metric Tons	\$	\$	Years	Years
400		1,000	2.5	750	-	0.5	0.5

Existing Condition

Currently the heated portion of the arena is heated at 20°C during the heating season from mid-October to mid-May.

Recommendations

Replace thermostats with programmable thermostats which would reduce costs by about 15% if the heat was turned down from 20°C to 16°C when unoccupied. Calculations are provided in Appendix B. There would be also be electricity savings from a reduced fan operating schedule.

The auditorium of the arena is mostly unoccupied, and the arena's occupied hours are about 70 hours per week. By reducing the temperature in unoccupied spaces and at night significant savings in heating fuel can be made at a low cost.

5.2 Capital Investment Measures

5.2.1 EEM 4 – Building Envelope Analysis – Roof Insulation

Budget	Annual Utility Savings		MTCDE	Total Savings	Available Incentives	Payback with	Payback without
COSI	Electricity	Oil				Incentives	Incentives
\$	kWh	L	Metric Tons	\$	\$	Years	Years
8,500	0	2,144	6	1,780	0	4.8	4.8

Existing Condition: Low R Value Roof Insulation.

Currently this is just one 3.5 in. layer of insulation in the attic space below the flat roof area with an approximate R-value of R-12.

Recommendations

Blow-in additional insulation into the attic space to bring up to Ontario Building Code (OBC) 2012 requirements of R-50.

5.2.2 EEM 5 – Building Envelope Analysis – New Doors

Budget	Annual Utility Savings		MTCDE	Total Savings	Available Incentives	Payback with	Payback without
COSI	Electricity	Oil				Incentives	Incentives
\$	kWh	L	Metric Tons	\$	\$	Years	Years
1,500	0	136	0.4	102.8	0	14.6	14.6

Existing Condition: Interior doors from unheated arena to heated foyer have significant air leakage, as well as 1 exterior door on second floor Auditorium.

Recommendations

Replace doors at the end of their useful life with new doors to limit air leakage. The payback is not appealing enough to replace doors before their useful life is over.

5.2.3 EEM 6 – Building Envelope Analysis – New Windows

Budget	Annual Utility Savings		MTCDE	Total Savings	Available Incentives	Payback with	Payback without
COSI	Electricity	Oil		_		Incentives	Incentives
\$	kWh	L	Metric Tons	\$	\$	Years	Years
38,000	0	1,075	2.9	806	0	47.1	47.1

Existing Condition: Existing windows between the heated area of the arena and the unheated rink part of the arena are single pane.

Township of Mulmur

CEP Volume 3: Energy Audit Report June 2020

Recommendations

Install new windows assumed to be equivalent to thermally unbroken aluminum frame with fixed, double glazing, low- ϵ =0.2, 12.7 mm argon space, fire rated coating.

Budget	Annual Utility Savings		MTCDE	Total Savings	Available Incentives	Payback with	Payback without
COSI	Electricity	Oil		_		Incentives	Incentives
\$	kWh	L	Metric Tons	\$	\$	Years	Years
1,800	100	571	1.5	490	0	3.7	3.7

5.2.4 EEM 7 – Water Conservation – Low Flow Fixtures

Existing Condition: Inefficient Plumbing Fixtures.

Our visual inspection revealed the following:

- The showerheads in the units were rated 2.5 GPM;
- The washroom faucet aerators were rated 2.2 GPM; and
- Kitchen aerators were typically rated at 2.2 GPM.

Recommendations

In order to reduce the water consumption and the energy used for DHW, we recommend the following measures:

- Replace all showerheads as 1.6 GPM (or less) showerheads;
- Replace the existing washroom faucet aerators rated with low-flow aerators rated for 0.5 GPM; and
- Replace the existing kitchen faucet aerators rated with low-flow aerators rated for 1.0 GPM.

Note: The cost of pumping and disinfecting water does not allow for significant cost savings to change to low flow toilets.

5.2.5 EEM 8 – Upgrade Furnace to Higher Efficiency Furnace

Budget	Annual Utility Savings		MTCDE	Total Savings	Available Incentives	Payback with	Payback without
COSI	Electricity	Oil		_		Incentives	Incentives
\$	kWh	L	Metric Tons	\$	\$	Years	Years
7,000	-	125	0.3	104	0	67.5	67.5

Existing Condition: Minimal Control of Common Area Heating

The building is equipped with 2 forced air oil furnaces. The furnaces come with one 1/2 HP supply fan. The units provide approximately 1,000 CFM of ventilation each. The supply fan is manually operating at full speed. The current efficiency of both units is assumed to be 84%. Between the two furnaces approximately 5,000 L of oil is used.

Recommendations

When the life of the furnace is over replacement of either a new 90% efficiency oil furnace or a 95% propane furnace should be installed, or an air source or ground source heat pump. A heat pump could offer cost savings as well as air conditioning in the summer for arena activities. Assuming 1 furnace uses approximately 2,500 L of oil, an increase in 5% efficiency saves approximately 125 L. It is not recommended to replace the furnace until useful life is over.

5.2.6 EEM 9 – Drain Water Heat Recovery

Budget	Annual Utility Savings		MTCDE	Total Savings	Available Incentives	Payback with	Payback without
COSI	Electricity	NG				Incentives	Incentives
\$	kWh	m³	Metric Tons	\$	\$	Years	Years
4,500	0	367	1.0	304	0	14.8	14.8

Existing Condition: Heat Recovery Opportunity

Drain-water heat exchangers can recover heat from the hot water used in showers, bathtubs, sinks, dishwashers, and clothes washers. They generally have the ability to store recovered heat for later use.

Figure 26: Drain Water Heat Recovery System

Township of Mulmur

CEP Volume 3: Energy Audit Report June 2020

Recommendation

Implementing a drain water heat recover system in not recommended as the payback is close to 15 years.

Budget	Annual Utility Savings		MTCDE	Total Savings	Available Incentives	Payback with	Payback without
COSI	Electricity	Oil		_		Incentives	Incentives
\$	kWh	L	Metric Tons	\$	\$	Years	Years
8,000	2,600	682	1.8	1,165	0	6.9	6.9

5.2.7 EEM 10 – New Zamboni Hot Water System

Existing Condition: Inefficient Hot Water System

The Zamboni Hot Water heating consists of an oil-fired hot water tank that is pumped into an insulated holding tank. The holding tank is circulated by a Grundfos pump and the insulated water heater is kept hot by electrical resistance heating. The existing hot water storage tank is large and has inefficient insulation.

Recommendations

Remove the existing storage tank with electrical resistance heating and circulation pump with two 75-gal propane tanks, this will reduce the Arena's electricity bill. New propane heaters are assumed to have greater efficiency than the existing oil furnace, furthermore, propane delivery prices are more economical for the Arena than oil.

5.2.8 EEM 11 – Desuperheater - Heat Recovery

Budget	Annual Utility Savings		MTCDE	Total Savings	Available Incentives	Payback with	Payback without
Cost	Electricity	Oil		_		Incentives	Incentives
\$	kWh	m³	Metric Tons	\$	\$	Years	Years
42,500		4,470	11.9	3,710		11.5	11.5

Existing Condition: No heat recovery

Currently Zamboni hot water is pumped to the oil heater for heating then into the holding tank circulated and heated by electricity. Compressors within the compressor room give off waste heat that is vented to the outside wasting that energy.

Recommendations

A desuperheater can take the waste heat from the compressors and heat the incoming groundwater from the well. This hot water can be used for the Zamboni hot water rather than heating it with propane. The desuperheater is assumed to be functional to pre-heat the water to 120°Fahrenheit (F) approximately 80% of the time.

40

Unfortunately, the capital cost is quite high, and the payback period falls outside of 10 years. For that reason, this measure is not recommended at this time. With an incentive from the government this could make this project viable.

Budget	Annual Utility Savings		MTCDE	Total Savings	Available Incentives	Payback with	Payback without
COSI	Electricity	Oil				Incentives	Incentives
\$	kWh	m³	Metric Tons	\$	\$	Years	Years
45,000	38,500		0	6,000	\$3,850	8.2	9.0

5.2.9 EEM 12 – DDC Controller on Refrigeration System

Existing Condition: No Automation

The existing refrigeration system was replaced around 2009. There appear to be no automatic controls or setbacks with the system.

Recommendations

There is currently no automation on the refrigeration system. It is recommended to install a seasonal controller with infrared camera as well as a VFD on the condenser FAN motor and a new condenser fan inverter duty motor. The controller can monitor outside temperature and control the refrigeration system for optimal energy use. The controller can also provide the customer with a host of other features like "game mode", "nighttime set back", that can also further reduce energy, as well as an interface with remote alarming, plant readings, and temperature control. Based on a discussion with a qualified refrigeration contractor cost savings per year can be between \$5,000-\$10,000. A conservative estimate of \$5,000 was used in analysis. Typically, a save on energy will provide an incentive for \$0.10/kwh of energy savings. This is to be confirmed should the project move forward.

5.2.10 EEM 13 – Electric Desiccant Dehumidifier

Budget	Annual Savin	Utility gs	MTCDE	Total Savings	Available Incentives	Payback with	Payback without
COSI	Electricity Oil					Incentives	Incentives
\$	kWh	m³	Metric Tons	\$	\$	Years	Years
40,000	19,000		0	\$2,500	\$1,900	15.2	16.0

Existing Condition: 1 Mechanical dehumidifier

The arena currently has 2 dehumidifiers, 1 electric desiccant dehumidifier and 1 mechanical dehumidifier (refrigerator coil technology).

Recommendations

Typically, electric desiccant dehumidifiers are 2.5 times more energy efficient than mechanical dehumidifiers. Since the payback with incentives is over 10 years, it is recommended to replace the mechanical dehumidifier when the mechanical dehumidifier is at the end of it's life. Based on a discussion with a qualified contractor cost savings per year can be between \$2,500-\$4,000. A conservative estimate of \$2,500 was used in analysis. Typically, save on energy will provide an incentive for \$0.10/kwh of energy savings. This is to be confirmed should the project move forward.

5.3 Distributed Generation/Renewable Energy Measures

5.3.1 EEM 14 – Rooftop Solar with Net Metering Connections

Budget	Annual Savin	Utility gs	MTCDE	Total Savings	Available Incentives	Payback with	Payback without	
COSI	Electricity NG					Incentives	Incentives	
\$	kWh	Wh m ³ Metric Tons		\$	\$	Years	Years	
114,375	228,000	-	-	12,435	-	7.0	9.3	

Existing Condition: Renewable Generation

The roof of the building has been considered for a solar PV installation. Applying safety setbacks from roof edges and impacts of shading, the panels are modeled to cover most of the south facing roof area. This space accommodates a total of approximately 190 kW.

Net metering allows you to send electricity generated from Renewable Energy Technologies (RETs) to the distribution system for a credit towards your electricity costs. Excess generation credits can be carried forward for a consecutive 12-month period to offset future electricity costs. Net-metered customers can now pair energy storage with renewable energy systems.

Recommendations

With a total nameplate capacity of approximately 190 kW, and consideration of system losses, the system is modeled to produce approximately 233 MWh of electricity per year. This will offset approximately 77% of the Community Centre's electricity use. With a simple payback on the equity of 9.3 years, Mulmur should consider developing this EEM.

Mulmur should keep an eye on the Climate Action Incentive Fund (CAIF) program outlined in the section below. This fund is scheduled to be announced in late 2019 or early 2020. The current program is for private businesses only. It is the writer's opinion that if a program were to be announced for municipalities as scheduled, that fund would likely be similar by providing 25% of the capital costs in a rebate. This would significantly improve the economics for the Community Centre solar project.

Township of Mulmur

CEP Volume 3: Energy Audit Report June 2020

Investigate a loan from Infrastructure Ontario. Infrastructure Ontario states they have flexible terms designed to match the life of the asset. Receiving a loan for 30 years to match the life of the asset at a low interest rate would maximize the return on investment (ROI) of the system.

The Loan Program provides various benefits to public sector borrowers:

- Affordable interest rates;
- Flexible terms of up to 30 years, designed to match the life of the asset;
- Access to dedicated and experienced staff throughout the loan process;
- Instant access to capital markets with no extra fees or commissions; and
- No need to refinance over the life of the loan.

Implementation

The next step would be a structural and roof assessment of the arena, connection feasibility assessment with Hydro One, and create a bid package for installation pricing. A ground mount solar project could also be considered, if Mulmur wanted to dedicate some ground space to solar.

6.0 Incentive Programs

6.1 Climate Action Initiative Fund

The Climate Action Incentive Fund (CAIF) SME Project stream provides support to smalland medium-sized enterprises (SMEs) for retrofit projects in sectors such as building, transportation, industry, waste, agriculture, and more. Up to 25% of the project's total eligible costs are applicable. Project minimum funding is \$20,000.00 and maximum is \$250,000.00. Currently they are accepting applications.

Eligible project category for building retrofits are below:

Building Retrofits

- Enhancements to building envelope (with direct energy savings), including energy efficient windows/doors/skylights, increased insulation, weatherproofing, and glazing;
- Energy efficient lighting system;
- Heating, ventilation, and air conditioning (HVAC) equipment/systems/controls;
- Water heating retrofits, including high efficiency condensing water heating;
- High-efficiency motors and controls;
- Energy management controls, including building automation systems; and
- Fuel switching to lower emitting energy sources in existing buildings.

Currently this funding is only available for small to medium sized business. However, Funding for municipalities, universities/colleges and hospitals under the Municipalities, Universities, Schools and Hospitals (MUSH) Retrofit stream will be announced later in 2019 to 2020.

Additional information about funding for energy efficiency and retrofit projects will be posted on their website as it becomes available.

Presumably, under the MUSH program the government will announce a similar level of funding for municipalities as private businesses. If that is true and an incentive fund of 25% becomes available some of the measures for Mulmur would become much more appealing. To illustrate this point, a new table of measures has been outlined below with updated payback periods.

6.2 EEMs Recommended with CAIF

If the CAIF was applied for and received for these energy efficiency projects the updated economics are presented in the below table. Including the potential 25 percent savings from the CAIF fund, eight Energy Efficiency Measures (EEMs) are recommended. The annualized savings of all recommendations totals more than \$20,706.00 (at projected energy prices). If fully implemented, the average weighted payback period from annual energy savings for these EEMs is estimated to be 6.4 years. Details are outlined in the table below.

EEM No.	Energy Efficiency Measure	Measure Type	Approx. Annual Savings	CAIF Incentive	Estimated Net Costs	Simple Payback Years
1	LED Lighting – Interior Lights	Upgrade Building Systems	\$216.00	\$374.00	\$731.00	3.4
2	LED Lighting – Exterior Parking Lot Lights	Upgrade Building Systems	\$160.00	\$223.00	\$568.00	3.5
3	Install Programmable Thermostats	Upgrade Building Systems	\$750.00	\$100.00	\$300.00	0.4
4	Building Envelope Analysis – Roof Insulation	Upgrade Building Envelope	\$1,780.00	\$2,125.00	\$6,375.00	3.6
7	Water Conservation - Low Flow Fixtures	Upgrade Building Systems	\$490.00	\$450.00	\$1,350.00	2.8
10	New Zamboni Hot Water System	Upgrade Building Systems	\$1,165.00	\$2,000.00	\$6,000.00	5.2
11	Desuperheater	Upgrade Building Systems	\$3,710.00	\$10,625.00	\$31,875.00	8.6
12	Controller	Upgrade Building Systems	\$5,000.00	\$11,250	\$29,904	6.0
14	Rooftop Solar	Renewable Technology	\$12,435.00	\$28,594.00	\$85,781.00	6.9
		Totals	\$25,706.00	\$55,740.00	\$162,884.00	4.5

Table 15: North Dufferin Community Centre Energy Efficiency Recommendations with CAIF Funding

6.3 FCM Retrofit of Municipal Facilities

Another program available is the Green Municipal Fund Capital Project: Retrofit of Municipal Facilities. A minimum of 30% energy efficiency of the municipal facility must be met to be approved for this funding with a minimum 20% coming from energy efficiency and 10% from onsite renewable energy. A low-interest loan of up to \$5 million and a grant of up to 15% of the loan; to cover up to 80% of eligible costs can be attained.

7.0 Summary

Fourteen separate Energy Efficiency Measures (EEMs) were identified with implementation costs and annual energy savings estimates. Eight Energy Efficiency Measures (EEMs) recommendations were identified with implementation costs and annual energy savings estimates. The annualized savings of all recommendations totals \$21,996.00 (at projected energy prices). If fully implemented, the average weighted payback period from annual energy savings for these EEMs is estimated to be 8.0 years. Details are outlined in the tables below.

If all recommendations are implemented a substantial reduction in utility consumption will be achieved. If solar is implemented, the electricity consumption could be close to net zero, and significant savings in fuel savings can be achieved as well approximated at 24% savings.

EEM No.	Energy Efficiency Measure	Measure Type	Approx. Annual Savings	Estimated Net Costs	Simple Payback Years
1	LED Lighting – Interior Lights	Upgrade Building Systems	\$216.00	\$1,105.00	5.1
2	LED Lighting – Exterior Parking Lot Lights	Upgrade Building Systems	\$160.00	\$790.00	4.9
3	Install Programmable Thermostats	Upgrade Building Systems	\$750.00	\$400.00	0.5
4	Building Envelope Analysis – Roof Insulation	Upgrade Building Envelope	\$1,780.00	\$8,500.00	4.8
7	Water Conservation - Low Flow Fixtures	Upgrade Building Systems	\$490.00	\$1,800.00	3.7
10	New Zamboni Hot Water System	Upgrade Building Systems	\$1,165.00	\$8,000.00	6.9
12	DDC Controller	Upgrade Building Systems	\$5,000.00	\$41,154	8.2
14	Rooftop Solar	Renewable Technology	\$12,435.00	\$114,375.00	9.2
		Totals	\$21,996.00	\$180,460.00	5.4

Table 16: North Dufferin Community Centre Energy Efficiency Recommendations

Note: Simple payback is an average of all projects.

EEM No.	Energy Efficiency Measure	Measure Type	Approx. Annual Savings	Net Costs	Simple Payback Years
5	Building Envelope Analysis – New Doors	Upgrade Building Envelope	\$103.00	\$1,500.00	14.6
6	Building Envelope Analysis – New Windows	Upgrade Building Envelope	\$806.00	\$38,000.00	47.1
8	Upgrade Furnace to Higher Efficiency	Upgrade Building Systems	\$104.00	\$7,000.00	67.5
9	Drain Water Heat Recovery	Upgrade Building Systems	\$304.00	\$4,500.00	14.8
11	Desuperheater	Upgrade Building Systems	\$3,710.00	\$42,500.00	11.5
13	Electric Desiccant Humidifier	Upgrade Building Systems	\$2,500	\$38,077	15.2
		Totals	\$7,527.00	\$93,500.00	28.4

Table 17: North Dufferin Community Centre EEMs not Recommended

Table 18: Summary of Utility Reductions for Recommendations

	Electricity	Oil	GHG Reduction
	kWh	L	MTCDE
Total 2017/2018 Utility Consumptions	300,000	18,221	49
Percentage Reduction in Utility Consumption	90%	24%	24%
Total Projected Utility Consumptions	31,274	13,824	37

Appendix A

Data

Honeywood Arena Ice Plant 2000 5377 1313 2016 - 2018

fear over year Hydro consumption in kWh:														_
	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Total	
2006													0	
2007													0	
2008													0	
2009													0	
2010													0	
2011													0	
2012													0	
2013													0	
2014													0	
2016	8,658	7,385	9,422	52,456	40,000	38,960	51,183	42,270	40,997	26,483	16,042	9,167	343,023	
2017	1,528	1,273	6,111	46,599	40,000	40,000	43,798	43,289	38,451	22,154	4,838	764	288,805	
2018	2,292	509	18,843	48,127	38,451	42,016	33,358	29,029	33,358	18,589	764	764	266,100	

Honeywood Arena Building 2000 6638 4343 2016 - 2018

Year over yea	ir Hydro cor	nsumption i	n kwn:										
	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Total
2006													0
2007													0
2008													0
2009													0
2010													0
2011													0
2012													0
2013													0
2014													0
2016	1,220	760	2,700	3,520	3,820	4,600	2,520	2,600	3,600	2,520	720	1,000	29,580
2017	700	817	1,813	3,206	3,825	4,600	3,760	3,620	4,000	2,000	560	780	29,681
2018	1,468	811	1,538	4,246	4,689	4,664	3,771	4,097	4,082	1,532	743	1,176	32,817

Honeywood Arena Building + Ice Plant 2000 6638 4343 + 2000 5377 1313

2016 - 2018

Year over yea	ear over year Hydro consumption in kWh:													
	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Total	
2006													0	
2007													0	
2008													0	
2009													0	
2010													0	
2011													0	
2012													0	
2013													0	
2014													0	
2016	9,878	8,145	12,122	55,976	43,820	43,560	53,703	44,870	44,597	29,003	16,762	10,167	372,603	
2017	2,228	2,090	7,924	49,805	43,825	44,600	47,558	46,909	42,451	24,154	5,398	1,544	318,486	
2018	3,760	1,320	20,381	52,373	43,140	46,680	37,129	33,126	37,440	20,121	1,507	1,940	298,917	

Year over year Furnace Oil consumption in Litres:

	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Total	kWh/L	Total kWh
2006													0	10.557	0
2007													0	10.557	0
2008													0	10.557	0
2009													0	10.557	0
2010													0	10.557	0
2011													0	10.557	0
2012													0	10.557	0
2013													0	10.557	0
2014													0	10.557	0
2015/2016												2016	12,841	10.557	135,562
2016/2017												2017	9,234	10.557	97,483
2017/2018												2018	14,121	10.557	149,075

Year over year Propane consumption Estimate in Litres:

	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Total	kWh/L	Total kWh
2006													0	7.08	0
2007													0	7.08	0
2008													0	7.08	0
2009													0	7.08	0
2010													0	7.08	0
2011													0	7.08	0
2012													0	7.08	0
2013													0	7.08	0
2014													0	7.08	0
2015/2016												2016	4,695	7.08	33,241
2016/2017												2017	9,461	7.08	66,984
2017/2018												2018	5,259	7.08	37,234

Year over year Total Fuel consumption Estimate in Litres:

	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Total	kWh/L	Total kWh
2006													0		0
2007													0		0
2008													0		0
2009													0		0
2010													0		0
2011													0		0
2012													0		0
2013													0		0
2014													0		0
2015/2016												2016	17,536	9.63	168,803
2016/2017												2017	18,695	8.80	164,467
2017/2018												2018	19,380	9.61	186,309

	Input	Output
Propane	1 L Propane	7.08 kWh
Fuel Oil	1 L Fuel Oil	10.57 kWh

Total Energy Use

	2016	2017	2018
Electricity	372,603	318,486	298,917
Fuel Oil	135,562	97,483	149,075
Propane	33,241	66,984	37,234
Total	541,406	482,953	485,226

2018 Energy Co	st
Electricity	\$40,145
Fuel Oil	\$12,437
Propane	\$2,629
	\$52,582

Date	Litres	Price	Total
12/28/2016	475.2	0.718	341.19
12/28/2016	5.6	0.718	4.02
12/21/2016	544.6	0.709	386.12
12/21/2016	11	0.79	8.69
12/14/2016	25.3	0.701	17.74
12/14/2016	590.1	0.701	413.66
12/7/2016	58.5	0.713	41.71
12/7/2016	1197.7	0.713	853.96
11/25/2016	1500.3	0.689	1,033.71
11/25/2016	361.8	0.689	249.28
9/21/2016	211.5	0.571	120.77
9/21/2016	14.7	0.571	8.39
5/2/2016	1442.6	0.639	921.82
5/2/2016	157.1	0.639	100.39
3/31/2016	668.5	0.689	460.60
3/31/2016	34.1	0.689	23.49
3/18/2016	438.6	0.585	256.58
3/18/2016	93.8	0.585	54.87
3/7/2016	146.4	0.576	84.33
3/7/2016	894.6	0.576	515.29
2/3/2016	681.7	0.565	385.16
2/18/2016	346.3	0.568	196.70
2/18/2016	1024.5	0.568	581.92
2/24/2016	53.5	0.556	29.75
2/24/2016	342.2	0.556	190.26
1/13/2016	13.8	0.572	7.89
1/13/2016	880.4	0.572	503.59
1/22/2016	595	0.54	321.30
1/22/2016	32.5	0.54	17.55
	12,841.90	0.631	8,130.73
11/22/2017	750.9	0.87	653.28
11/22/2017	19.5	0.87	16.97
11/6/2017	466.6	0.804	375.15
11/6/2017	30.5	0.804	24.52
10/4/2017	42.7	0.767	32.75
10/4/2017	1245.8	0.767	955.53
10/25/2017	56.5	0.776	43.84
10/25/2017	464.8	0.776	360.68

Furnace Maintenance 10/3/2016 470.00

Furnace Maint	enance
11/1/2017	367.25
10/10/2017	470.00
	837.25

4/6/2017	396.9	0.727	288.55		
3/16/2017	700	0.705	493.50		
3/7/2017	415.6	0.748	310.87		
3/23/2017	74.3	0.699	51.94		
3/23/2017	278.9	0.699	194.95		
3/29/2017	409.8	0.703	288.09		
2/28/2017	306.9	0.751	230.48		
2/22/2017	24.6	0.75	18.45		
2/22/2017	235.9	0.75	176.93		
2/15/2017	350.1	0.738	258.37		
2/9/2017	568.3	0.778	442.14		
2/9/2017	24.3	0.778	18.91		
2/1/2017	838.8	0.738	619.03		
1/19/2017	395	0.749	295.86		
1/13/2017	8.6	0.75	6.45		
1/13/2017	600.3	0.75	450.23		
1/6/2017	529	0.788	416.85		
	9234.6	0.761	7,024.31		
12/7/2018	1350.8	0.816	1,102.25		
12/7/2018	442.6	0.816	361.16		
11/15/2018	189.6	0.879	166.66		
11/15/2018	734.1	0.897	658.49		
11/2/2018	2275.2	0.926	2,106.84		
11/2/2018	466.3	0.926	431.79		
4/26/2018	423	0.921	389.58		
4/26/2018	176.7	0.921	162.74		
4/18/2008	1129.7	0.887	1,002.04		
3/29/2018	443.1	0.904	400.56		
3/29/2018	44.5	0.904	40.23		
3/19/2018	1065.1	0.854	909.60		
3/19/2018	209.9	0.854	179.25		
2/28/2018	918.8	0.881	809.46		
2/28/2018	249.5	0.881	219.81		
2/14/2018	290.8	0.832	241.95		
2/9/2018	327.25	0.858	280.78		
2/9/2018	1762.2	0.858	1,511.97		
1/16/2018	1622.6	0.901	1,461.96		
	14121.75	0.880	12,437.13		

Furnace Main	tenance
3/8/2018	295.00
12/10/2018	269.99
12/10/2018	269.99
12/20/2018	154.91
12/20/2018	564.47
	1,554.36

			Fur	nace Oil			Assumed			
Year		Total Cost	Cos	st	Pro	pane Cost	Cost/L	Propane L		
	2016	\$ 10,009		8,130.73	\$	1,878.27	0.4	4695.7		
	2017	\$ 11,282		7,024.31	\$	4,257.69	0.45	9461.5		
	2018	\$ 15,067		12,437.13	\$	2,629.87	0.5	5259.7		
Average		\$	9,197.39	\$	2,921.95		6472.3			

NDCC Board of Management 2018 Budget

		2016	2016	2017	2017	2018	2018	Budget	
Account	Description	Actual	Budget	Actuals	Budget	Draft 1	Draft 2	Change	Comments
01-2000-4000	MULMUR GRANT	(27,000)	(27,000)	(47,240)	(47,240)	(20,758)	(25,042)	22,199	
01-2000-4010	MELANCTHON GRANT	(17,500)	(17,500)	(17,500)	(17,500)	(20,758)	(25,042)	(7,542)	
01-2000-4020	DONATION REVENUE	(7,200)	0	0	0	0	0	0	
01-2000-4030	FUNDRAISING REVENUE	(19,922)	(14,500)	(17,382)	(19,380)	(20,000)	(20,000)	(620)	Incl. BBQ
01-2000-4100	MINOR RATE RENTAL REVENUE	(55,131)	(53,997)	(48,069)	(56,300)	(50,000)	(45,000)	11,300	half the year at lower amt so next yr lower
01-2000-4110	ICE RENTAL REVENUE (PRIME)	(44,955)	(50,719)	(50,442)	(42,000)	(49,000)	(52,000)	(10,000)	renting more to other groups
01-2000-4115	ICE RENTAL REVENUE (NON-PRIME)	(1,301)	(1,200)	(743)	(500)	(500)	(500)	0	
01-2000-4120	NON-RESIDENT USER FEES	(3,044)		(3,396)	(2,250)	(3,000)	(3,000)	(750)	
01-2000-4200	BOOTH RENTAL REVENUE	(4,331)	(5,000)	(5,328)	(5,000)	(4,300)	(4,300)	700	includes \$1000 for Strawberry supper
01-2000-4210	HALL RENTAL REVENUE	(2,628)	(2,400)	(2,850)	(2,400)	(2,400)	(2,600)	(200)	
01-2000-4220	FLOOR RENTAL REVENUE	(372)	(100)	0	(100)	(100)	0	100	
01-2000-4230	SIGN RENTAL REVENUE	(4,168)	(4,200)	(4,160)	(4,500)	(4,160)	(4,160)	340	
01-2000-4240	VENDING MACHINE REVENUE	(304)	(300)	(251)	(300)	(300)	(250)	50	
01-2000-4300	PENALTIES & INTEREST	(885)	(300)	(527)	(450)	(525)	(525)	(75)	
01-2000-7000	WAGES	50,561	47,000	42,898	50,000	50,000	45,000	(5,000)	
01-2000-7005	BENEFITS-EI/CPP/WSIB/EHT	5,969	5,000	5,192	5,600	6,000	5,600	0	
01-2000-7010	BENEFITS-OMERS	590		2,913	4,500	0	3,000	(1,500)	
01-2000-7015	STAFF TRAINING/DUES, FEES, SUBSCRIP	303	0	145	484	300	300	(184)	billed from County at end of year
01-2000-7100	OFFICE/COMPUTER SUPPLIES	480	100	1,171	1,680	730	730	(950)	
									incls advertising, phone, internet, 1 email acct
01-2000-7110	COMMUNICATION	2,422	1,553	3,075	1,500	2,425	3,000	1,500	\$73.20
01-2000-7115	INSURANCE	20,605	19,000	16,445	21,225	12,200	12,200	(9,025)	RFQ large decrease in insurance
01-2000-7120	HEALTH & SAFETY	2,527	3,248	2,723	2,800	2,600	2,800	0	billed from County at end of year
01-2000-7125	PROF FEES - AUDIT	1,120	1,089	1,153	1,075	1,120	1,188	113	
01-2000-7130	PROF FEES - WATER TESTING	300	300	5 300	300	300	300	0	
01-2000-7150	BANK CHARGES	251	500	108	250	25	500	250	
01-2000-7200	HYDRO	78,970	56,206	58,050	56,206	56,500	60,000	3,794	increase in hydro rates
01-2000-7210	FURNACE FUEL/ZAMB PROPANE	10,009	16,240	11,282	9,000	10,000	12,000	3,000	
01-2000-7220	BLDG/GROUNDS MAINTENANCE	16,489	12,180	15,863	14,500	14,000	15,000	500	Includes grounds mtne, snow removal
01-2000-7230	BOOTH MAINTENANCE	1,048	1,300	1,280	1,300	1,100	1,300	0	
01-2000-7240	ICE PLANT/MACH MAINT	15,406	6,000	8,581	12,000	8,000	9,000	(3,000)	
01-2000-7300	FUNDRAISING EXPENSE	10,395	7,500	7,324	10,500	10,500	10,500	0	Incl. BBQ
01-2000-7400	BAD DEBT	26		33	0	0	0	0	1
01-2000-6010	TSFR TO REC RESERVES			5,000	5,000				7-16.4
01-2000-6015	TSFR TO BLDG RESERVES			1,105	0				
	Amount needed	28,732	0	(13,245)	0	41,515	50,083		0.0040

FEB - 8 2018 MARCH 8, 2018

NDCC Board of Management 2020 Budget

						Draft #1	Dratt #2		
		2018	2018	2019	2019	2020	2020	Budget	
Account	Description	Actuals	Budget	Actual	Budget	Budget	Buaget	variance	Comments
REVENUES		25 277	75 777	40.000	55.034	40.363	40 013	16 2121	10 479/
01-2000-4000		23,277	23,277	40,900	55,024	49,202	40,012	(0,212)	-10.47%
01-2000-4010	MELANCIHON GRANT	23,277	23,277	40,960	53,024	49,202	40,012	(0,212)	-10.4776
01-2000-4020	DONATION REVENUE	100	-	-	-			0	BBO Stroug
		20 272	70.000	10.047	20.000	20.000	20.000	0	BBQ, Straw.
01-2000-4030		20,273	20,000	19,047	20,000	20,000	20,000	0	Sohhei
01-2000-4100		45,901	45,000	20,079	45,000	45,000	45,000	(1.000)	
01-2000-4110		47,003	52,000	20,542	52,000	51,000	51,000	(1,000)	
01-2000-4115	ICE RENTAL REVENUE (NON-PRIME)	697	500	186	500	500	500	0	
01-2000-4120	NON-RESIDENT USER FEES	3,578	3,000	2,617	3,250	3,250	3,250	0	
01-2000-4200	BOOTH RENTAL REVENUE	3,561	4,300	1,120	5,000	3,500	3,500	(1,500)	
01-2000-4210	HALL RENTAL REVENUE	2,230	2,600	3,035	2,600	2,600	2,600	0	
01-2000-4220	FLOOR RENTAL REVENUE	463	-	-	+			0	
01-2000-4230	SIGN RENTAL REVENUE	3,980	4,160	3,620	4,160	3,700	3,700	(460)	
01-2000-4240	VENDING MACHINE REVENUE	238	250	109	-	-	-	0	
01-2000-4300	PENALTIES & INTEREST	773	525	451	525	676	788	263	
01-2000-4500	PRIOR YEAR DEFICIT			(29,582)	(29,582)			29,582	
	TOTAL REVENUE	180,011	182,888	133,955	213,500	228,750	227,961		
EXPENSES	\$12,000 on fuel oil -> \$3000 on								
	Zamboni Propane								based on
						65 aaa	~~ ~~~	10.000	2018/19
01-2000-7000	WAGES	52,760	45,000	36,634	55,000	65,000	65,000	10,000	actuals
01-2000-7005	BENEFITS-EI/CPP/WSNB/EHT	5,066	5,600	3,510	5,600	5,600	5,600	0	
							4 050	4.050	UNIERS MUSE
01-2000-7010	BENEFITS-OMERS	1,740	3,000	•	-	4,950	4,950	4,950	De onerea
01-2000-7015	STAFF TRAINING/DUES, FEES, SUBSCRIP	1,556	300	940	300	1,000	1,000	700	
01-2000-7100	OFFICE/COMPUTER SUPPLIES	1,901	1,200	1,823	1,700	2,000	2,000	300	
01-2000-7110	COMMUNICATION	2,512	3,000	1,378	3,000	3,000	3,000	0	
01-2000-7115	INSURANCE	11,763	12,200	12,518	12,200	13,300	13,300	1,100	
01-2000-7120	HEALTH & SAFETY	2,087	2,800	39	2,800	2,500	2,500	(300)	billed at y/e
01-2000-7125	PROF FEES - AUDIT	1,403	1,188	•	1,400	1,400	611	(789)	per quote
01-2000-7130	PROF FEES - WATER TESTING	232	300	168	300	300	300	0	
01-2000-7150	BANK CHARGES	388	500	302	400	500	500	100	
01-2000-7200	HYDRO	55,360	60,000	24,049	60,000	60,000	60,000	0	
01-2000-7210	FURNACE FUEL/ZAMB PROPANE	15,067	12,000	8,792	12,000	15,000	15,000	3,000	
01-2000-7220	BLDG/GROUNDS MAINTENANCE	23,665	15,000	9,044	20,000	17,400	17,400	(2,600)	
01-2000-7230	BOOTH MAINTENANCE	4,462	1,300	404	1,300	1,300	1,300	0	
01-2000-7240	ICE PLANT/MACH MAINT	18,771	9,000	3,334	12,000	10,000	10,000	(2,000)	
01-2000-7300	FUNDRAISING EXPENSE	10,859	10,500	9,965	10,500	10,500	10,500	0	
01-2000-7400	BAD DEBT	0	-	203	-	•	-	0	
01-2000-7500	CAPITAL PURCHASES	0		•	15,000	15,000	15,000	0	
	TOTAL EXPENSES	209,593	182,888	113,103	213,500	228,750	227,961	14,461	6.77%
	Net Income/(Deficit)	(29,582)	0	20,852	0	0	0		-
				00/0	0000				
	Operating Reserve Continuity		2018	2019	2020				
	Opening Reserve Balance		-	40,000	40,000				
	Operating Levy Mulmur		20,000	-	-				
	Operating Levy Melancthon		20,000		-				
	Ending Reserve Balance		40,000	40,000	40,000				

Appendix B

Calculations

Appendix B1 EEM1 Interior Light Calculation

Honeywood Arena Current Fixtures

	Area	Fixture Type	Number of Lamps in the Fixture	Type of Lamp	# Fixtures	KW/Fixture	hrs/day	Peak Demand (KW)	kwh/day	working days	kwh/year	\$/kwh (variable)	cost per year
1	EOVER	A1	2x28	28w Fluorescent	3	0.06	10	0.18	1.80	250	450.00	0.1665	\$74.93
2	FOTER	В	2x10	10w led	9	0.02	10	0.18	1.80	250	450.00	0.1665	\$74.93
3	4 Change Reems	A	2x28	28w Fluorescent	4	0.06	10	0.24	2.40	250	600.00	0.1665	\$99.90
4	4 change Rooms	В	2x10	10w led	4	0.02	10	0.08	0.80	250	200.00	0.1665	\$33.30
5	GIRLS CHANGE ROOM	A	2x28	28w Fluorescent	2	0.06	10	0.12	1.20	250	300.00	0.1665	\$49.95
6	MENS & WOMENS BATHROOM	A	2x28	28w Fluorescent	2	0.06	10	0.12	1.20	250	300.00	0.1665	\$49.95
7	OFFICE & REFFERES ROOM	A	2x28	28w Fluorescent	2	0.06	10	0.12	1.20	250	300.00	0.1665	\$49.95
8	CANTEEN	С	4X32	32w Fluorescent	3	0.128	12	0.38	4.61	110	506.88	0.1665	\$84.40
9	CANTEEN	G	1x100	100w Incandescent	2	0.1	12	0.20	2.40	110	264.00	0.1665	\$43.96
10	ICE RINK	A	4x10	9w LED	50	0.04	10	2.00	20.00	250	5000.00	0.1665	\$832.50
11	Maintenance area	A	2x10	2x10 watt	4	0.02	10	0.08	0.80	250	200.00	0.1665	\$33.30
12	Auditorium	D	2x32	2x32 w flourescent	18	0.064	10	1.15	11.52	20	230.40	0.1665	\$38.36
13	Auditorium Kitchen	С	4X32	32w Fluorescent	3	0.128	10	0.38	3.84	20	76.80	0.1665	\$12.79
								4.86	49.73		8801.28		\$1.427.05

New	Fixtures

	Area	Fixture Type	Number of Lamps in the Fixture	Type of Lamp	# Fixtures	ĸw	hrs/day	Peak Demand (KW)	kwh/day	working days	kwh/year	\$/kwh (variable)	cost per year
1	EOVER	A1	2x28	10w led	3	0.02	10	0.06	0.60	250	150.00	0.1665	\$24.98
2	TOTER	A1	2x10	10w led	9	0.02	10	0.18	1.80	250	450.00	0.1665	\$74.93
3	4 Change Rooms	A1	2x28	10w led	4	0.02	10	0.08	0.80	250	200.00	0.1665	\$33.30
4	4 Change Rooms	A1	2x10	10w led	4	0.02	10	0.08	0.80	250	200.00	0.1665	\$33.30
5	GIRLS CHANGE ROOM	A1	2x28	10w led	2	0.02	10	0.04	0.40	250	100.00	0.1665	\$16.65
6	MENS & WOMENS BATHROOM	A1	2x28	10w led	2	0.02	10	0.04	0.40	250	100.00	0.1665	\$16.65
7	OFFICE & REFFERES ROOM	A1	2x28	10w led	2	0.02	10	0.04	0.40	250	100.00	0.1665	\$16.65
8	CANTEEN	С	4X32	32w Fluorescent	3	0.128	12	0.38	4.61	110	506.88	0.1665	\$84.40
9	CANTEEN	G	1x100	100w Incandescent	2	0.1	12	0.20	2.40	110	264.00	0.1665	\$43.96
10	ICE RINK	Α	4x10	9w LED	50	0.04	10	2.00	20.00	250	5000.00	0.1665	\$832.50
11	Maintenance area	Α	2x10	2x10 watt	4	0.02	10	0.08	0.80	250	200.00	0.1665	\$33.30
12	Auditorium	D	2x32	2x32 w flourescent	18	0.064	10	1.15	11.52	20	230.40	0.1665	\$38.36
13	Auditorium Kitchen	С	4X32	32w Fluorescent	3	0.128	10	0.38	3.84	20	76.80	0.1665	\$12.79
								4.72	48.37		7578.08		\$1,261.75

					Savin	ngs 4 Lamp Replac	cement															
		Savings and Payback	Number of Lamps in the Fixture	Type of Lamp	# Fixtures	ĸw	hrs/day	Peak Demand (KW)	kwh/day	working days	kwh/year	\$/kwh (variable)	Savings	Material Cost	Fixture Cost Total	Incentive per fixture	Incentive Total	Labour/ fixture	Labour	Total Cost w/o Incentives	Total Cost w/ Incentives	Simple Payback
1	EOVER	A1	2x28	10w led	3	0.04	10	0.12	1.20	250	300.00	0.1665	\$49.95	\$75.00	\$225.00	\$30.00	\$90.00	\$40.00	\$120.00	\$345.00	\$255.00	5.11
2	FOTER	A1	2x10	10w led	9	0	10	0.00	0.00	250	0.00	0.1665	\$0.00									
3	4 Change Booms	A1	2x28	10w led	4	0.04	10	0.16	1.60	250	400.00	0.1665	\$66.60	\$75.00	\$300.00	\$30.00	\$120.00	\$40.00	\$160.00	\$460.00	\$340.00	5.11
4	4 change rooms	A1	2x10	10w led	4	0	10	0.00	0.00	250	0.00	0.1665										
5	GIRLS CHANGE ROOM	A1	2x28	10w led	2	0.04	10	0.08	0.80	250	200.00	0.1665	\$33.30	\$75.00	\$150.00	\$30.00	\$60.00	\$40.00	\$80.00	\$230.00	\$170.00	5.11
6	MENS & WOMENS BATHROOM	A1	2x28	10w led	2	0.04	10	0.08	0.80	250	200.00	0.1665	\$33.30	\$75.00	\$150.00	\$30.00	\$60.00	\$40.00	\$80.00	\$230.00	\$170.00	5.11
7	OFFICE & REFFERES ROOM	A1	2x28	10w led	2	0.04	10	0.08	0.80	250	200.00	0.1665	\$33.30	\$75.00	\$150.00	\$30.00	\$60.00	\$40.00	\$80.00	\$230.00	\$170.00	5.11
8	CANTEEN	С	4X32	32w Fluorescent	3	0	12	0.00	0.00	110	0.00	0.1665										
9	CANTEEN	G	1x100	100w Incandescent	2	0	12	0.00	0.00	110	0.00	0.1665										
10	ICE RINK	A	4x10	9w LED	50	0	10	0.00	0.00	250	0.00	0.1665										
11	Maintenance area	A	2x10	2x10 watt	4	0	10	0.00	0.00	250	0.00	0.1665										
12	Auditorium	D	2x32	2x32 w flourescent	18	0	10	0.00	0.00	20	0.00	0.1665										
13	Auditorium Kitchen	С	4X32	32w Fluorescent	3	0	10	0.00	0.00	20	0.00	0.1665										
								0.52	5.2				\$216.45				\$390.00			\$1,495.00	\$1,105.00	5.11

Payback without incentives

Payback without incentives	
1 year savings	\$216.45
Implementation cost	\$1,495.00
Simple Payback (years)	6.91

Payback with incentives

\$216.45
\$1,105.00
5.11

Appendix B2 EEM2 Exterior Light Calculation

Exterior Lighting Honeywood Arena Current Fixtures

	Area	Fixture Type	Number of Lamp in the Fixture	Type of Lamp	# Fixtures	ĸw	hrs/day	Peak Demand (KW)	kwh/day	working days	kwh/year	\$/kwh (variable)	cost per year
1	Exterior Lighting	J	1x70	70w HPS	1	0.07	12	0.07	0.84	365	306.60	0.1665	\$51.0
2	Exterior Lighting	L	1x250	250w HPS	1	0.25	12	0.25	3.00	365	1,095.00	0.1665	\$182.3
3	Exterior Lighting	Р	1x25	30w LED	2	0.03	12	0.06	0.72	365	262.80	0.1665	\$43.7
4	Wall Packs	Z	1x14	LED Wall pack	3	0.014	12	0.04	0.50	365	183.96	0.1665	\$30.6
								0.32	3.84		1.848.36		\$233.3

	New Fixtures												
	Area	Fixture Type	Number of Lamp in the Fixture	Type of Lamp	# Fixtures	ĸw	hrs/day	Peak Demand (KW)	kwh/day	working days	kwh/year	\$/kwh (variable)	cost per year
1	Exterior Lighting	J	1x30	LED Bulb	1	0.03	12	0.03	0.36	365	131.40	0.1665	\$21.88
2	Exterior Lighting	L	1x70	LED Bulb	1	0.07	12	0.07	0.84	365	306.60	0.1665	\$51.05
								0.10	1.20		438.00		\$72.93

				Savings 4 Larr	p Replacement																
	Savings and Payback	Number of Lamp in the Fixture Type of Lamp	# Fixtures	ĸw	hrs/day	Peak Demand (KW)	kwh/day	working days	kwh/year	\$/kwh (variable)	Savings	Material Cost	Fixture Cost Total	Incentive per fixture	Incentive Total	Labour/ fixture	Lift Rental	Labour	Total Cost w/o Incentives	Total Cost w/ Incentives	Simple Payback
1 Exterior Lighting	J	1x70 LED Bulb	1	0.07	12	0.04	0.48	365	175.20	0.1665	\$29.17	\$200.00	\$200.00	\$25.00	\$25.00	\$120.00	\$500.00	\$120.00	\$320.00	\$295.00	10.11
2 Exterior Lighting	L	1x250 LED Bulb	1	0.25	12	0.18	2.16	365	788.40	0.1665	\$131.27	\$600.00	\$600.00	\$75.00	\$75.00	\$70.00		\$70.00	\$670.00	\$595.00	4.53
						0.22			963.60		\$160.44				\$100.00			\$190.00	\$990.00	\$890.00	5.55

Payback without incentives
1 year savings

Payback without incentives	
1 year savings	\$160.44
Implementation cost	\$990.00
Simple Payback (years)	6.17

Payback with incentives	
1 year savings	\$160.44
Implementation cost	\$890.00
Simple Payback (years)	5.55

Need to add boom truck or discuss boom truck

 \odot 13 Dashboard... End-use... Target... Steps... Use Copy base to proposed

🔲 🚵 Show image

iong circiope prop Window properties

Options

Appendix B3 EEM3 Programmable Thermostat

REE 1 |

Building envelope Description Building envelope Note - Building envelope Proposed case Base case Building north 350 350 24/7 Schedule Schedule Incremental initial costs \$ North East South West North East South West ✓ Walls m² U. -72 180 72 180 72 180 72 180 Area m² 68.4 162 68.4 171 68.4 162 68.4 171 Net area (W/m2)/°C U-value • 0.75 0 0.75 0.75 0 0.75 0.75 0.75 0.75 1 0.75 0 1 C \$ Incremental initial costs \$. ✓ Windows % • 5% 10% 5% 5% 5% 10% 5% 5% U. Area R-value m² - °C/W • Solar heat gain coefficient \$ \$ • Incremental initial costs Solar shading - season of use 2 Solar shading - winter % Solar shading - summer % \$ Incremental initial costs Doors Roof ft² . 4,000 4,000 U. Area U-value (W/m²)/°C . 0.5 0 0.5 0 \$ • Incremental initial costs Skylight Floor Wall - below-grade Floor - below-grade Natural air infiltration • Calculated Method Medium • Medium • Walls + . Window Medium Medium * Doors Medium Medium . Natural air infiltration L/s • 269 269 Incremental initial costs \$ 0 \$ Incremental initial costs - total \$ Incremental O&M savings Number of building envelope units 1 1 System selection Heating -Heating -Energy saved * • Furnace Furnace Heating system kWh 59,133 10,938 Heating • 70,071 15.6%

Subscribe

Appendix B4 EEM4 Roof Insulation

Heat Profile for Lobby to Exterior

			Annual Heating ΔT between Interior								
			and Exterior								
Month	Time A	vg. Exterior ¹	T _{int} ²	$\Delta T_{int-ext}$	∆T _{int-ext} ·Time						
	(hr)	(°C)	(°C)	(K)	(K·h)						
January	744	-9	20	29	21576						
February	672	-8.4	20	28.4	19085						
March	744	-3.1	20	23.1	17186						
April	720	4.4	20	15.6	11232						
May	744	10.8	20	9.2	6845						
June	720	15.6	20	4.4	3168						
July	744	18.1	20	1.9	1414						
August	744	17.3	20	2.7	2009						
September	720	13.5	20	6.5	4680						
October	744	7.8	20	12.2	9077						
November	720	1.7	20	18.3	13176						
December	744	-5.2	20	25.2	18749						
¹ Source: RET	Screen - N	Mount Forest S	tation	Σ=	128196						

²Interior temperature assumed to be constant at 20°C

Energy Efficiency Measure - Roof Insulation

Project Description	R _{imp,existing}	U _{existing}	R _{imp,improved}	U _{improved}	ΔU	ΔT·Time	Roof Area	Energy
	(hr·ft ² ·°F/BTU)	(W/m ² ·K)	(hr·ft ² ·°F/BTU)	(W/m ² ·K)	(W/m ² ·K)	(K·h)	(m ²)	(kWh)
Increase Lobby Roof Insulation to R-50	12	0.47	50	0.11	0.36	104940	372	14,024

Oil Furnace Efficiency	Oil L	Cost of Oil Per L	Total Cost of Oil	Comments
0.62	2,144	\$ 0.83	\$ 1,779.48	Lobby Roof Area

OPINION OF COST

Our opinion of costs is based on our experience with contractors specializing in these fields, historical cost data from similar projects, and/or current construction cost data published by the R.S. Means Company. These cost estimates should be used as a guide only, as costs may vary according to the time of year, quality of materials used, volume of work, actual site conditions, etc.

Door Weatherstripping

Item No.	Item	Cos	t
А	Mobilization/Demobilization	\$	700
В	Blown Insulation	\$	6,800
	Construction Sub-Tota	al \$	7,500
С	HST (13%)	\$	975
	TOTAL (ROUNDED)\$	8,500

Appendix B5 EEM5 Air Leakage

Heat Profile for Lobby to Exterior and Arena

				Annual H	eating ∆T b	etween Interior	Annual Heating ∆T between Interio		
					and Exterior Arena			1	
Month	Time A	vg. Exterior ¹	Estimated Arena ²	T _{int} ³	ΔT _{int-ext}	ΔT _{int-ext} ·Time	T _{int} ³	$\Delta T_{int-arena}$	∆T _{int-arena} ·Time
	(hr)	(°C)	(°C)	(°C)	(K)	(K·h)	(°C)	(K)	(K·h)
January	744	-9	-7	20	29	21576	20	27	20088
February	672	-8.4	-6.4	20	28.4	19085	20	26.4	17741
March	744	-3.1	-1.1	20	23.1	17186	20	21.1	15698
April	720	4.4	5.4	20	15.6	11232	20	14.6	10512
May	744	10.8	10.8	20	9.2	6845	20	9.2	6845
June	720	15.6	15.6	20	4.4	3168	20	4.4	3168
July	744	18.1	18.1	20	1.9	1414	20	1.9	1414
August	744	17.3	17.3	20	2.7	2009	20	2.7	2009
September	720	13.5	13.5	20	6.5	4680	20	6.5	4680
October	744	7.8	8.8	20	12.2	9077	20	11.2	8333
November	720	1.7	2.7	20	18.3	13176	20	17.3	12456
December	744	-5.2	-3.2	20	25.2	18749	20	23.2	17261
¹ Source: RET	Screen -	Mount Forest	Station		Σ=	128196	Σ= 120204		120204

²Estimated service room interior temp is +2°C when exterior is <0°C; +1°C when exterior is 0°C to 10°C; same as exterior when >10°C.

³Interior lobby temperature assumed to be constant at 20°C

Energy Efficiency Measure - Door Air Leakage

		Air Leakage Rates ¹					
I	Door Area ² (m ²)	q _{existing} (L/s⋅m ²)	q _{improved} (L/s⋅m ²)	Δq (L/s·m ²)	U ³ (W/K)	ΔT·Time (K·h)	Energy (kWh)
Lobb	y to Arena	(_/ • … /	(_, ,	(_/ • … /			. ,
1	2.2	3.0	1.5	1.5	3.9	120204	469
2	2.2	3.0	1.5	1.5	3.9	120204	469
Lobb	y to Exterior						
3	2.2	3.0	1.5	1.5	3.9	128196	500
						ΣE=	1438

¹Air Leakage values taken from AAMA/WDMA/CSA 101/I.S.2/A440-17, Table 6.2:

- Existing air leakage rates of service doors assumed to be double A2 rating (2 x 1.5 $\mbox{L/s}{\cdot}\mbox{m}^2)$

- Improved air leakage rates of original doors assumed to be equivalent to A2 air leakage of 1.5 $\mbox{L/s}\mbox{-m}^2)$

²Door dimensions assumed to be 3'-6"wide by 6'-8" tall

 3 U= Door area x Δ q x heat capacity of air

Heat Capacity of Air is 1.0 kJ/kg·K = 1.2 W·s/L·K assuming air density of 1.2kg/m³

L of Fuel	Cost of Fuel	Measure Cost	Simple
10.56kWh/L	\$0.75/L		Payback

136	\$ 102.18	\$ 1,500.00	14.68

OPINION OF COST

Our opinion of costs is based on our experience with contractors specializing in these fields, historical cost data from similar projects, and/or current construction cost data published by the R.S. Means Company. These cost estimates should be used as a guide only, as costs may vary according to the time of year, quality of materials used, volume of work, actual site conditions, etc.

Door Weatherstripping

Item No.	Item		Cost	
Α	Mobilization/Demobilization		\$	200
В	Door Weatherstripping		\$	1,100
		Construction Sub-Total	\$	1,300
С	HST (13%)		\$	169
		TOTAL (ROUNDED)	\$	1,500

Appendix B6 EEM6 Interior Windows

Heat Profile for Tank to Service Room Heat Transfer

				Annual H	Annual Heating ΔT between Interior			
					and Aren	เล		
Month	Time A	Avg. Exterior ¹	Estimated Arena ²	T _{int} ³	$\Delta T_{int-arena}$	∆T _{int-arena} ∙Time		
	(hr)	(°C)	(°C)	(°C)	(K)	(K·h)		
January	744	-9	-7	20	27	20088		
February	672	-8.4	-6.4	20	26.4	17741		
March	744	-3.1	-1.1	20	21.1	15698		
April	720	4.4	5.4	20	14.6	10512		
May	744	10.8	10.8	20	9.2	6845		
June	720	15.6	15.6	20	4.4	3168		
July	744	18.1	18.1	20	1.9	1414		
August	744	17.3	17.3	20	2.7	2009		
September	720	13.5	13.5	20	6.5	4680		
October	744	7.8	8.8	20	11.2	8333		
November	720	1.7	2.7	20	17.3	12456		
December	744	-5.2	-3.2	20	23.2	17261		
¹ Source: RET	Screen -	Mount Forest ?	Station		Σ=	120204		

²Estimated service room interior temp is +2°C when exterior is <0°C; +1°C when exterior is 0°C to 10°C; same as exterior when >10°C.

³Interior lobby temperature assumed to be constant at 20°C

Energy Efficiency Measure - Interior Window Replacement

Description	U _{existing}	U _{improved}	ΔT·Time	Area	Energy
	(W/m ² ·K)	(W/m ² ·K)	(K·h)	(m²)	(kWh)
EEM-X Replace Thermally Unbroken Hollow Metal Frame Windows between Arena and Interior Lobby	6.42	3.47	120204	32.0	11347

L of Fuel	Cost of Fuel	Measure Cost	Simple
10.56kWh/L	\$0.75/L		Payback
1075	\$ 806.14	\$ 38,000.00	47.14

*Window U-values taken from 2011 ASHRAE fundamentals handbook (Table 4, page 30.8):

- Existing windows assumed to be equivalent to thermally unbroken aluminum frame with fixed, 3.2mm thick, single glazing

- Upgraded windows assumed to be equivalent to thermally unbroken aluminum frame with fixed, double glazing, low- ϵ =0.2, 12.7mm argon space, fire rated coating (e.g. Pyrostop by Pilkington). Aluminium frames cannot be thermally broken as the butyl break compromises its fire rating.

OPINION OF COST

Our opinion of costs is based on our experience with contractors specializing in these fields, historical cost data from similar projects, and/or current construction cost data published by the R.S. Means Company. These cost estimates should be used as a guide only, as costs may vary according to the time of year, quality of materials used, volume of work, actual site conditions, etc.

Item No.	Item	Cos	t
А	Mobilization/Access/Protection/Demobilization	\$	2,000
В	Window Replacement	\$	23,400
С	Allowances		
i)	Building Permit	\$	200
D	Construction Contingency	\$	3,000
	Construction Sub-Total	\$	28,600
E1	Engineering Services: Design & Tender	\$	3,500
E2	Engineering Services: Construction Review (Based on a 1 week construction schedule)	\$	1,800
	Sub-Total	\$	33,900
F	HST (13%)	\$	4,407
	TOTAL (ROUNDED)	\$	38,000

EEM-X: Interior Window Replacement

Appendix B7 EEM7 Water Conservation

Honeywood Arena Water Usage Calculation

Baseline Case: change occupant values to reflect anticipated occupancy

	Number of			Duration			
Fixture Type	Fixtures	Consumption (Daily Uses	(min)	Occupants	Daily Water Use (gal)	Notes
3.5 gpf toilet - male (gallons per flush) changerooms		4 3.5	2.5	1	60	525	75 people in the arena per day on average for 8.5 hour day - 60 hours per week Assur
3.5 gpf toilet - female (gallons per flush)	:	3 3.5	3	1	15	158	
2.0 gpf urinal - male (gallons per flush) 1st Floor Lobby	:	2 2	0.5	1	60	60	Only two urinals in lobby - most flushing would be from changerooms toilets
Commercial Lavatory Faucets- 2.2 gpm		9 2.2	3	0.3	75	149	
Canteen sink - 2.2 gpm		1 2.2	20	0.25	2	22	Used only on weekends
Dishwasher		16	2	1	1	12	Used only on weekends
Coffee/Tea/Water		1 2			75	150	2 L of water per occupant
Showerhead - 2.5 gpm		4 2.5	1	4	34	339	237 Showers per week across 4 showers
					Total Daily Volume	1,414	Pumping Costs
					Monthly	29,685	Assumption 12Gal/min pump
					m^3/month	112	1.1kw pump
							m3 Gal Min hours kwh
					Annual Work Days	250	1,337.6 353,354.3 29,446.2 490.8 539.8
					Total Annual Usage (g) 353,393	
					Total Annual Usage (m	י 1,338	Heating Costs
							L/Year Cost per year
							2098.6 \$1,741.83
Calculator: To determine estimated savings, insert occupan	t values (same	e as Baseline) and	ł				
consumption values based on fixtures and fixture fittings in	stalled Number of						

m^3/month

Annual Operation Days

Total Annual Usage (g)

Total Annual Usage (m'

Annual Savings

% Reduction

m^3 reduction

93

250

291,234

1,102

62,159

-17.6%

235

Fixture Type	Fixtures	Co	nsumption	Daily Uses	Duration	Occupants	Daily Water Use (gal)
3.5 gpf toilet - male (gallons per flush) changerooms		4	3.5	2.5	1	60	525
3.5 gpf toilet - female (gallons per flush)		3	3.5	3	1	15	158
2.0 gpf urinal - male (gallons per flush) 1st Floor Lobby		2	2	0.5	1	60	60
Commercial Lavatory Faucet - 0.5 gpm		9	0.5	3	0.3	75	34
Canteen sink - 1.0 gpm		1	1	20	0.25	2	10
Dishwasher		1	6	2	1	1	12
Coffee/Tea/Water		1	2			75	150
Low Flow Showerhead - 1.6 gpm		4	1.6	1	4	34	217
						Total Daily Volume	1,165
						Monthly	24,464

Assu 1.1kv	mption 12G v pump	al/min pum	р				
m3	Gal		Min		hours	kwh	
	235.3	62,152.2		5,179.3	86.3		95.0
Heat	ing Costs						
L/Yea	ar Cos	st per year					
	1527.8	\$1,268.04					
Year	v Savings						
Pum	, oing kwh sa	ved		94.95			
\$ (\$0	.01665/kwł	ו)	\$	15.81			
Cost	Savings		\$	489.60			
Imple	ementation	Cost	\$	1,800.00			
Tota	Savings		\$	1,800.00			
Simp	le Payback			3.68	years		

Low Flow Fixtures Domestic Water Heater Cost Savings from Reduced Oil Consumption Yearly Savings

Fixture	# of Fixtures	Cost per fixture	Installation cost/fixture	Total Cost
Commercial Lavatory Faucet - 0.5 gpm	9	\$100	\$100	\$1,800
Kitchen sink - 0.5 gpm	1	\$100	\$100	\$200
Dishwasher	1			\$0
Low Flow Shower Head	4	\$25	\$10	\$140
Total				\$1,800
			Simple payback (years)	3.68

		John wood Efficiency is	0.62						
Oil Water Heater Savings	Gallons Heated	BTU/Gallon of Water	BTU Required	BTU/gal/no. 2 oil	Gal of Fuel Oil/Day	Days in Peak Season	Gal/Year	L/Year	Cost per year
Before	365.6	846.8	309604.8	139600.0	2.2	250.0	554.4	2098.6	\$1,741.83
After	266.2	846.8	225389.5	139600.0	1.6	250.0	403.6	1527.8	\$1,268.04

Savings

570.84 \$473.79

Appendix B8 EEM8 Furnace Calculation

Honeywood Arena Furnace Oil Consumption Calculation

20187	Consumption	12,841			Average 3	Year Oil Usage	
2017 0	Consumption	9,234			L of Oil	kWh/L	kWh
2016 0	Consumption	14,121		Annual	12,065	10.5570	127,374
			-	DHW	2,000	10.5570	21,114
				Zamboni	5,200	10.5570	54,896
				Furnace	4,865	10.5570	51,363
					L of Oil		
				Replace 1			
				Furnace 5%			
				More Efficient			
				Savings	121.63		

	Estimated Oil Usage by	Arena Use
1		
2	<u>2018</u>	
3	Total Oil	12,841
4	DHW	2,000
	Zamboni Hot Water	5,200
5	Total Heating Load	5,641
1	<u>2017</u>	
2	Total Oil	9,234
3	DHW	2,000
4	Zamboni Hot Water	5,200
5	Total Heating Load	2,034
	<u>2016</u>	
	Total Oil	14,121
	DHW	2,000
	Zamboni Hot Water	5,200
	Total Heating Load	6,921
Appendix B9 EEM9 Drain Water Heat Recovery

Drain Water Heat Recovery on Low Flow Fixtures

Yearly Savings

Fixture	# of Fixtures	Cost per fixture	Installation cost/fixture	Total Cost
Powerpipe or similar	2	\$700	\$1,200	\$3,800
Total				\$3,800
	_		Simple payback (years)	12.49

John wood Efficiency is 0.62

Oil Water Heater Savings	Gallons Heated	BTU/Gallon of Water	BTU Required	BTU/gal/no. 2 oil	Gal of Fuel Oil/Day	Days in Peak Season	Gal/Year	L/Year	Cost per year
Including Low Flow Fixtures	266.2	846.8	225389.5	139600.0	1.6	250.0	403.6	1527.8	\$1,268.04
With DWHR 24% Heat Recovery							306.8	1161.1	\$963.71
Savings								366.66	\$304.33

Appendix B10 EEM10 New Zamboni Hot Water System

		John wood E	EF is 0.62							
Oil Water Heater			BTU/Gallon of		BTU/gal/no.	Gal of Fuel				
Zamboni Cost	Gallons/year	EF	Water	BTU Required	2 oil	Oil/yr	L/Year	kWh	\$/L	Cost per year
Before	227700.0	0.62	846.8	192810483.9	139600.0	1381.2	5227.7	55152.3	\$ 0.83	\$3,973.06
	682.2949787									
		75 Gal Propa	ane EF assumed 0.7	75						
Propane Water Heater			BTU/Gallon of		BTU/gal/pro	Gal of Fuel				
Zamboni Cost	Gallons/year	EF	Water	BTU Required	pane	Oil/yr	L/Year			Cost per year
Before	227700.0	0.75	700.0	159390000.0	91000.0	1751.5	6629.6	45713.7	\$ 0.49	\$3,248.49

Zamboni Water Heater Cost Comparison

Savings \$724.57

Appendix B11 EEM11 Desuperheater Heat Recovery

Desuperheater Raises incoming tempurature from 55 to 120 degrees 80% of the time

Q=Mcp∆T Q= Heat Gain by quantity of water in btu/hr M=Mass in pounds/min Cp=Specific Heat of Water =1 ΔT= Change in Temp Farenheit 1) Water Flow Rate though heater of 2.3 US gallons/min = 19.48 lbs= M 19.4 2) Cp=1 3) ∆T= 120-55=65 Q= 19.48lb/min*60min/hr*1*65 = 75,972 btu/hr 8 floods per day 607776 btu/day 1 Therm=100,000 BTU 140000 BTU/Gallon of No. 2 Fuel Oil 62% water heater efficiency + 80% Desuperheater Efficiency Using Fuel Oil 2 62% efficiency = output BTU/Gallon= 0.62*140,000BTU= 86,800 BTU/Gallon BTU/Day/BTU/Gallon*80% Desuperheater Efficiency = 5.60 Gallons per day Gallons/Day * 7 months per year* 30 days per month * 3.8 Gallons/L= 4470 L of Fuel Oil/ year (Estimated 5200 total) \$0.83/L of Fuel Oil \$ 3,710.18 Based on 7 month ice season = \$ 3,710.18 Capital Cost of \$42,500 Payback = 11.45

Appendix B12 EEM12 DDC Controller

From Qualified Refrigeration Contractor Proper Operation of DDC controller for 1 rink arena with 6.5 month operation yields \$5,000-\$10,000 yearly savings for ice plant

Conservatively estimated at \$5,000 per year Current Rate of energy is approximately \$0.13/kWh

Total Energy Savings for \$5,000 yearly savings

- = \$5,000/0.13
- = 38461.538 kwh

Rounded 38500 kwh

Potential Incentive from Hydro One Estimated at \$0.10/kWh saved

Incentive = \$3,850.00

Budget Cost from Contractor \$45,000
Payback
without
Incentive 9 years
Payback with
Incentive 8.2 years

Appendix B13 EEM13 Electric Desiccant De-Humidifier From Qualified Refrigeration Contractor Electric Desiccant De-humidifier provides savings of \$2500-\$4,000 for single rink operation

Conservatively estimated at \$2,500 per year Current Rate of energy is approximately \$0.13/kWh

Total Energy Savings for \$5,000 yearly savings

- = \$2500/0.13
- = 19230.769 kWh

Rounded 19000 kWh

Potential Incentive from Hydro One Estimated at \$0.10/kWh saved

Incentive = \$1,900.00

Budget Cost from Contractor \$40,000

Payback without Incentive 16 years

Payback with Incentive 15.2 years

RETScreen Energy Model - Power project

Show alternative units

Proposed case power system				
Analysis type	G	 Method 1 Method 2 		
Photovoltaic Power capacity Manufacturer Model	kW	190.00		See product database
Capacity factor	%	14.0%		
Electricity exported to grid	MWh	233.0		
Electricity export rate	\$/MWh	134.00		

RETScreen Cost Analysis - Power project

Settings						
 Method 1 	•	Notes/Range		No	tes/Range	
O Method 2	0	Second currency			None	
	0	Cost allocation				
Initial costs (credits)	Unit	Quantity	Unit	cost	Amount	Relative costs
Feasibility study						
Feasibility study	cost	1	\$	5,000 \$	5,000	
Subtotal:				\$	5,000	1.1%
Development						
Development	cost	1	\$	20,000 \$	20,000	
Subtotal:				\$	20,000	4.3%
Engineering						
Engineering	cost	1	\$	10,000 \$	10,000	
Subtotal:				\$	10,000	2.2%
Power system						
Photovoltaic	kW	190.00	\$	2,250 \$	427,500	
Road construction	km			\$	-	
Transmission line	km			\$	-	
Substation	project			\$	-	
Energy efficiency measures	project			\$	-	
User-defined	cost			\$	-	
				\$	-	
Subtotal:				\$	427,500	92.4%
Balance of system & miscellaneous						
Spare parts	%			\$	-	
Transportation	project			\$	-	
Training & commissioning	p-d			\$	-	
User-defined	cost			\$	-	
Contingencies	%		\$	462,500 \$	-	
Interest during construction			\$	462,500 \$	-	
Subtotal:		Enter number of	months	\$	-	0.0%
Total initial costs				\$	462,500	100.0%
Annual costs (credits)	Unit	Quantity	Unit	cost	Amount	
O&M						
Parts & labour	project	190	\$	39 \$	7,410	
User-defined	cost			\$	-	
Contingencies	%		\$	7,410 \$	-	
Subtotal:				\$	7,410	
					1.15	
Periodic costs (credits)	Unit	Year	Unit	cost	Amount	
User-defined	cost			\$	-	
				¢		

Peri	odic costs (credits)	Unit	Year	Unit cost	Amount	
	User-defined	cost			\$	-
					\$	-
	End of project life	cost			\$	-

RETScreen Emission Reduction Analysis - Power project

Emission Analysis

• Method 1

O Method 2

O Method 3

Base case electricity system (Baseline)				
		GHG emission factor	T&D	GHG emission
		(excl. T&D)	losses	factor
Country - region	Fuel type	tCO2/MWh	%	tCO2/MWh
Canada - Ontario	Other	0.131		0.131
Recoling changes during project life				

□ Baseline changes during project life

Base case system GHG summary (Baseline)

Fuel type	Fuel mix	Fuel GHG emission consumption factor GHG emissio MWh tCO2/MWh tCO2	on
Electricity	100.0%	233 0.131 30.	.5
Total	100.0%	233 0.131 30	.5

Proposed case system GHG summary (Power project) Fuel GHG emission GHG emission tCO2 consumption MWh factor tCO2/MWh Fuel mix % 100.0% 100.0% Fuel type 0.000 0.0 Solar Total 233 233 _ 0.0 T&D losses Electricity exported to grid MWh 233 0 0.131 0.0 Total 0.0

GHG emission reduction summary

	G	Base case BHG emission tCO2	Proposed case GHG emission tCO2	Proposed case GHG emission tCO2		Gross annual GHG emission reduction tCO2	GHG credits transaction fee %	Net annual GHG emission reduction tCO2	
Power project		30.5	0.0			30.5		30.5	
Net annual GHG emission reducti	ion	30.5	tCO2	is equivalent to	5.6	Cars & light trucks n	ot used		

RETScreen Financial Analysis - Power project

Financial parameters			Project costs a	and savings/income	summary			Yearly c	ash flows		
General			Initial costs					Year	Pre-tax	After-tax	Cumulative
Fuel cost escalation rate	%	0.0%	Feasibility stu	dy	1.1%	\$	5,000	#	\$	\$	\$
Inflation rate	%	2.0%	Development		4.3%	\$ ¢	20,000	0	-115,625	-115,625	-115,625
Project life	vr	30	Power system	1	92.4%	\$	427,500	2	9,166	9,166	-98.273
	-							3	10,182	10,182	-88,091
Finance	¢							4	11,237	11,237	-76,854
Incentives and grants	\$	75.00/						5	12,330	12,330	-64,524
Debt ratio	% \$	346.875	Balance of sv	stem & misc	0.0%	\$	0	7	13,465	13,405	-51,059
Equity	\$	115,625	Total initial c	osts	100.0%	\$	462,500	8	15,861	15,861	-20,556
Debt interest rate	%	2.50%					-	9	17,127	17,127	-3,430
Debt term	yr	30						10	18,439	18,439	15,009
Debt payments	\$/yr	16,573	Annual costs a	nd dobt navmonte				11	19,800	19,800	34,809
			O&M	inu uebt payments		\$	7 410	13	22,211	21,211	78 695
Income tax analysis			Fuel cost - pro	posed case		\$	0	14	24,192	24,192	102,888
			Debt payment	s - 30 yrs		\$	16,573	15	25,766	25,766	128,653
			Total annual	costs		\$	23,983	16	27,397	27,397	156,050
			Pariodic costs	(credite)				17	29,089	29,089	185,139
			r en louic costs	(creats)				19	32,661	32,661	248,642
								20	34,546	34,546	283,187
								21	36,500	36,500	319,687
			Annual aquing	and income				22	38,526	38,526	358,213
		-	Fuel cost - ba	s and income		\$	0	23	40,828	40,626	441.643
Annual income			Electricity exp	ort income		\$	31,224	25	45,061	45,061	486,704
Electricity export income								26	47,400	47,400	534,104
Electricity exported to grid	MWh	233						27	49,825	49,825	583,929
Electricity export rate	\$/MWh	134.00						28	52,339	52,339	636,268
Electricity export escalation rate	%	3.5%	Total annual	savings and income		\$	31.224	30	57.645	57.645	748.857
, , , , , , , , , , , , , , , , , , ,				.			- /				
GHG reduction income											
Not CHC reduction	tCO2/vm	21	Financial viabi	litz							
Net GHG reduction - 30 vrs	tCO2/yi	916	Pre-tax IRR -	equity		%	13.9%				
	1002	010	Pre-tax IRR -	assets		%	3.4%				
			After-tax IRR	- equity		%	13.9%				
			After-tax IRR	- assets		%	3.4%				
			Simple payba	ck		vr	19.4				
Customer premium income (rebate)			Equity paybac	k		yr	9.2				
			Net Present V	alue (NPV)		\$	300,998				
			Annual life cyc	cie savings		ъ∕уг	17,407				
			Benefit-Cost (B-C) ratio			3.60				
			Debt service of	coverage			1.49				
			Energy produc	ction cost		\$/MWh	87.63				
Other income (cost)			GHG reductio	n cost		\$/tCO2	(570)				
			Cumulative cas	sh flows graph							
			800.000								
			000,000								
Clean Energy (CE) production income			700,000								
		_									
			600,000								
			500,000								
			(\$)								
			\$ 400.000								
			ê ^{400,000}							/	
			rs l								
			<u>ຮ</u> 300,000								
			tive								
			- 200,000								
			E.								
			0 100.000								
				1 2 3 4 5	6 7 8	9 10 11	12 13 14 15	16 17	18 19 20 21 2	22 23 24 25 26	27 28 29 30
			-100,000								
			-200,000								
						Y	'ear				

Appendix C

Benchmark Report

ENERGY STAR[®] Energy Performance Scorecard

Appendix D

Drawings

612800 Prawings

.

R.J. Burnside & Associates Limited