Mansfield Residential

Township of Mulmur

Traffic Impact Study for 2735528 Ontario Inc.

Type of Document:
Final Report

Project Number:
JDE - 21035
Date Submitted:
October $5^{\text {th }}, 2021$
Revised: February $2^{\text {nd }}, 2024$

John Northcote, P.Eng.
Professional License \#: 100124071

Legal Notification

This report was prepared by JD Northcote Engineering Inc. for the account of 2735528 Ontario Inc.
Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. JD Northcote Engineering Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Executive Summary

This report summarizes the traffic impact study prepared for a proposed development located in the northeast quadrant of the Airport Road (County Road 18) / County Road 17 intersection in the Township of Mulmur [Township], County of Dufferin [County]. The report assesses the impact of traffic related to the proposed development on the adjacent roadway and provides recommendations to accommodate this traffic in a safe and efficient manner.

The proposed residential development is anticipated to consist of 43 single family detached units and 28 semi-detached units.

The proposed development is anticipated to include one full movement access onto County Road 18 [Street ' A '] and one full movement access onto County Road 17 opposite of Thomson Trail [Street ' C '].

The scope of this analysis includes a review of the following intersections:

- County Road 18 / County Road 17;
- County Road 18 / Street 'A'; and
- Street 'C' \& Thompson Trail / County Road 17.

Conclusions

1. The proposed development is expected to generate a total of 56 AM and 73 PM peak hour trips.
2. Detailed turning movement traffic and pedestrian counts for the County Road 18 / County Road 17 intersection were commissioned by JD Engineering.
3. An intersection operation analysis was completed at the study area intersections, using the existing (2024) and background (2026 and 2031) traffic volumes, without the proposed development traffic. This enabled a review of existing and future traffic deficiencies that would be present without the influence of the proposed development. No geometric lane improvements or traffic signal improvements are recommended within the study area.
4. An estimate of the amount of traffic that would be generated by the proposed development was prepared and assigned to the study area streets and intersections.
5. An intersection operation analysis was completed under total (2026 and 2031) traffic volumes with the proposed development operational at the study area intersections. No geometric lane improvements or traffic signal improvements are recommended within the study area.
6. Street ' A ' will operate efficiently as full-movement accesses, with one-way stop control for the westbound movements. A single eastbound and westbound lane at Street ' A ' will provide the necessary capacity to service the proposed development.
7. Street ' C ' will operate efficiently as full-movement access, with two-way stop control for the northbound and southbound movements. A single northbound and southbound lane at Street ' C ' will provide the necessary capacity to service the proposed development.
8. County Road 18 will need to be reconstructed to improve the vertical curve and sight distance. Preliminary plan and profile drawings are provided in Appendix H .
9. With the above-noted road reconstruction, the sight distance available for Street ' A ' and Street ' C ' are suitable for their intended use.
10. In summary, the proposed development will not cause any operational issues and will not add a notable delay or congestion to the local roadway network.

Table of Contents

1 Introduction 1
1.1 Background1
1.2 Study Area 1
1.3 Study Scope and Objectives 2
1.4 Horizon Year and Analysis Periods 2
2 Information Gathering 3
2.1 Street and Intersection Characteristics 3
2.2 Local Transportation Infrastructure Improvements 4
2.3 Transit Access 4
2.4 Other Developments within the Study Area 4
2.5 Background Growth Rate 7
2.6 Traffic Counts 7
2.6.1 Calculation of Existing (2024) Traffic Volumes 7
2.7 Horizon Year Traffic Volumes 9
3 Intersection Operation without Proposed Development 11
3.1 Introduction 11
3.2 Intersection Capacity Analysis Criteria 12
3.3 Existing (2024) Intersection Operation 12
3.4 Background (2026) Intersection Operation 13
3.5 Background (2031) Intersection Operation 14
4 Proposed Development Traffic Generation and Assignment 15
4.1 Traffic Generation 15
4.2 Traffic Assignment 15
4.3 Total Horizon Year Traffic Volumes with the Proposed Development 16
5 Intersection Operation with Proposed Development 19
5.1 Total (2026) Intersection Operation 19
5.2 Total (2031) Intersection Operation 20
5.3 Sight Distance Review 21
5.4 Site Access 22
6 Summary 23

List of Tables

Table 1 - Estimated Traffic Generation - Mansfield Gas Station West 5
Table 2 - Mansfield Gas Station West Traffic Distribution 6
Table 3 - Traffic Count Data 7
Table 4 - Estimated Traffic Generation - Thomson Trail Residential Area 8
Table 5 - Thomson Trail Residential Area Traffic Distribution 8
Table 6 - Level of Service Criteria for Intersections. 12
Table 7 - Existing (2024) LOS 13
Table 8 - Background (2026) LOS 13
Table 9 - Background (2031) LOS 14
Table 10 - Estimated Traffic Generation of Proposed Development 15
Table 11 - Proposed Development Traffic Distribution. 16
Table 12 - Total (2026) LOS 20
Table 13 - Total (2031) LOS 21
List of Figures
Figure 1 - Proposed Site Location and Study Area 2
Figure 2 - Existing Lane Configuration within Study Area 4
Figure 3 - Mansfield Gas Station West development Traffic Assignment 6
Figure 4 - Existing (2024) Traffic Volumes 9
Figure 5 - Background (2026) Traffic Volumes 10
Figure 6 - Background (2031) Traffic Volumes 11
Figure 7 - Proposed Development Traffic Assignment. 17
Figure 8 -Total (2026) Traffic Volumes 18
Figure 9 -Total (2031) Traffic Volumes 19
List of Appendices
APPENDIX A - Site Plan
APPENDIX B - Traffic Count Data
APPENDIX C - Synchro Analysis Output - Existing Traffic Volumes
APPENDIX D - MTO Left Turn Warrant Analysis
APPENDIX E - OTM Signal Justification Sheets
APPENDIX F - Synchro Analysis Output - Background Traffic Volumes
APPENDIX G - Synchro Analysis Output - Total Traffic Volumes
APPENDIX H - Sight Distance Drawings

1 Introduction

1.1 Background

2735528 Ontario Inc. [The Developer] is proposing to develop a residential subdivision, located in the northeast quadrant of the Airport Road (County Road 18) / County Road 17 intersection in the Township of Mulmur [Township], County of Dufferin [County].

The proposed residential development is anticipated to consist of 43 single family detached units and 28 semi-detached units.

The proposed development is anticipated to include one full movement access onto County Road 18 [Street ' A '] and one full movement access onto County Road 17 opposite of Thomson Trail [Street ' C '].

The Developer has retained JD Northcote Engineering Inc. [JD Engineering] to prepare this traffic impact study in support of the proposed development.

1.2 Study Area

Figure 1 shows the location of the proposed development and study area intersections, in relation to the surrounding area. The Site Plan by IPS Consulting Inc. is provided in Appendix A.

The proposed development is bound by County Road 18 to the west, residential lands and County Road 17 to the south and agricultural/rural lands to the north and east.

Based on our correspondence with the Township and County, the following intersections will be analysed as part of this study:

- County Road 18 / County Road 17;
- County Road 18 / Street 'A'; and
- Street 'C' \& Thompson Trail / County Road 17.

Figure 1 - Proposed Site Location and Study Area

1.3 Study Scope and Objectives

The purpose of this study is to identify the potential impacts to traffic flow at the site access and on the surrounding roadway network. The study analysis includes the following tasks:

- Consult with the Township and County to address any traffic-related issues or concerns they have with the proposed development;
- Determine existing traffic volumes and circulation patterns;
- Estimate future traffic volumes if the proposed development was not constructed, including the impact of additional proposed developments in the area;
- Complete level-of-service [LOS] analysis of horizon year (without the proposed development) traffic conditions and identify operational deficiencies;
- Estimate the amount of traffic that would be generated by the proposed development and assign to the roadway network;
- Complete LOS analysis of horizon year (with the proposed development) traffic conditions and identify additional operational deficiencies;
- Identify improvement options to address operational deficiencies; and
- Document findings and recommendations in a final report.

1.4 Horizon Year and Analysis Periods

Traffic scenarios for the existing year (2024), build-out year (2026) and 5 -year post build-out year (2031) were selected for analysis of traffic operations in the study area. The weekday morning [AM] and weekday afternoon [PM] peak hours have been selected as the analysis periods for this study.

2 Information Gathering

2.1 Street and Intersection Characteristics

County Road 18 (Airport Road) is a two-lane arterial road with no sidewalks. County Road 18 generally has an urban cross-section and an asphalt 'killstrip' within 100 metres of County Road 17 and generally has a rural cross-section with asphalt shoulders elsewhere within the study area. County Road 18 has a posted speed of $50 \mathrm{~km} / \mathrm{h}$ south of the north end of the subject site and a posted speed limit of $70 \mathrm{~km} / \mathrm{h}$ north of the north end of the subject site within the study area. County Road 18 is under the jurisdiction of the County within the study area.
$10^{\text {th }}$ Sideroad is a two-lane collector road. $10^{\text {th }}$ Sideroad, west of County Road 18 within the study area has a rural cross-section, a gravel shoulder on both sides of the road, a speed limit of $50 \mathrm{~km} / \mathrm{h}$ and is under the jurisdiction of the Township. $10^{\text {th }}$ Sideroad, east of County Road 18, is also known as County Road 17 and is under the jurisdiction of the County. County Road 17 has an urban cross section, an asphalt 'killstrip' on both sides of the road and a posted speed limit of $50 \mathrm{~km} / \mathrm{h}$ between County Road 18 and Adrian Avenue. County Road 17 has a rural cross section, gravel shoulders on both sides of the road and a posted speed limit of $70 \mathrm{~km} / \mathrm{h}$ east of Adrian Avenue within the study area.

Thomson Trail is a two-lane local road with a rural cross-section. Thomson Trail has gravel shoulders on both sides of the road, an assumed (unposted) speed limit of $50 \mathrm{~km} / \mathrm{h}$ and is under jurisdiction of the Township.

The existing lane configuration within the study area is illustrated in Figure 2.

Figure 2 - Existing Lane Configuration within Study Area

2.2 Local Transportation Infrastructure Improvements

Based on a review of the County's 2024 Capital Budget Package, County Road 17 and County Road 18 are anticipated to be resurfaced in 2029. These improvements are not anticipated to significantly change traffic operations within the study area. There are no other infrastructure improvements anticipated within the study area.

2.3 Transit Access

There is no municipal transit service within the study area.

2.4 Other Developments within the Study Area

A gas station was recently constructed at the southwest corner of the County Road 18 / County Road 17 intersection [Mansfield Gas Station West].

The traffic counts used in this report were completed prior to the construction of the Mansfield Gas Station West development. Consequently, the traffic generated from the Mansfield Gas Station West development has been added to the existing (2024) traffic volumes (further discussed in Section 2.6.1.).

For the purposes of this study, it has been assumed that all traffic generated by the Mansfield Gas Station West development within the study area will be new traffic and would not be in the study area if the development was not constructed.

The Mansfield Gas Station West development includes 4 pumping stations that provide 8 fueling positions and a 280 sq.m. convenience store with drive-through. The Mansfield Gas Station West development is currently constructed and operating.

The traffic generation for the Mansfield Gas Station West development has been calculated based on the data provided in the Institute of Transportation Engineers [ITE] Trip Generation Manual ($10^{\text {th }}$ Edition) [ITE Trip Generation Manual]. The following ITE land uses have been applied to estimate the traffic:

- ITE land use 945 (Gasoline/ service station with convenience market) - General Urban / Suburban Setting; and
- ITE land use 937 (Coffee/Donut shop with drive-through window) - General Urban / Suburban Setting.

The AM and PM peak hour of traffic generation for the Mansfield Gas Station West development does not exactly align with the AM and PM peak hour in the traffic counts; consequently, we have applied the peak hour of adjacent street traffic. The estimated trip generation of the Mansfield Gas Station West development is illustrated below in Table 1.

It has been assumed that the convenience store drive-through will be for a coffee shop. In order to be conservative with our analysis, we have completed traffic generation calculations for ITE land use 937 in addition to ITE land use 945 assuming a quarter of the GFA of the convenience store will be for the coffee shop.

Table 1 - Estimated Traffic Generation - Mansfield Gas Station West

Land Use	Size	AM Peak Hour			PM Peak Hour		
		IN	OUT	TOTAL	IN	OUT	TOTAL
Gasoline/ service station with convenience market ITE Land Use:945	8 Vehicle fueling positions	51	49	100	57	55	112
Coffee/Donut shop with drivethrough window ITE Land Use:937	754 sq.ft.*	34	33	67	17	16	33
TOTAL TRIP GENERATION		85	82	167	74	71	145
INTERNAL CAPTURE		-10	-10	-20	-12	-12	-24
NET SITE GENERATION		75	72	147	62	59	121
PASS-BY TRIPS (ITE \#945)**		-28	-28	-56	-28	-28	-56
PASS-BY TRIPS (ITE \#937)***		-14	-14	-28	-6	-5	-11
PRIMARY TRIPS		33	30	73	28	26	54

*It has been assumed that a quarter of the convenience store GFA will be for a coffee shop
**ITE Land Use 945 pass-by trips for the AM and PM peak hour are 62% and 56% respectively, according to the ITE data
***ITE Land Use 937 pass-by trips for the AM and PM peak hour are 49% and 50% respectively, according to the ITE data
The distribution of traffic for the Mansfield Gas Station West development is based on the distribution of the existing traffic volumes within the study area. Table 2 illustrates the calculation of the distribution of ingress and egress traffic for the Mansfield Gas Station West development.

Table 2 - Mansfield Gas Station West Traffic Distribution

Travel Direction (to / from)	AM Peak Hour		PM Peak Hour	
	Ingress	Egress	Ingress	Egress
North via County Road 18	47%	37%	37%	45%
East via County Road 17	12%	12%	9%	11%
Outside of Study Area*	41%	51%	54%	44%
TOTAL	$\mathbf{1 0 0 \%}$			

*Trips to and from the west via $10^{\text {th }}$ Sideroad and to and from the south via County Road 18 are considered to the be outside the study area as these trips are not anticipated to utilize the study area intersections.

Using the traffic distribution pattern noted above, the traffic assignment for the Mansfield Gas Station West development was calculated for the AM and PM peak hour and is illustrated in Figure 3.

Figure 3 - Mansfield Gas Station West development Traffic Assignment

2.5 Background Growth Rate

A background traffic growth rate of 4.7\% per year has been selected for County Road 18 and 4.4% per year for County Road 17 and $10^{\text {th }}$ Sideroad within the study area, based on historical traffic data provided by the County and historical 24-hour traffic count data on the County's traffic counts webpage.

2.6 Traffic Counts

Detailed turning movement traffic and pedestrian counts for the County Road 18 / County Road 17 intersection intersections were commissioned by JD Engineering.

Table 3 summarizes the traffic count data collection information.
Table 3 - Traffic Count Data

Intersection (N-S Street/E-W Street)	Count Date	AM Peak Hour	PM Peak Hour	Source
County Road 18 / County Road 17	Tuesday, July 13, 2021	$08: 00-9: 00$	$16: 00-17: 00$	JD Eng.*

*Traffic counts were completed by Accu-Traffic Inc. on behalf of JD Engineering.
Detailed traffic count data can be found in Appendix B. The peak hours of traffic generation for the study area intersections generally aligned with the anticipated peak hour of traffic generation by the proposed development.

Heavy vehicle percentages from the traffic count data have also been included in the Synchro analysis.

2.6.1 Calculation of Existing (2024) Traffic Volumes

2.6.1.1 Covid-19 Restrictions Adjustment

Although the traffic data was obtained in 2021 for the study area intersections, COVID-19 restrictions were implemented in Ontario at this time; consequently, these traffic counts do not reflect typical traffic conditions. To verify the 2021 counts, a comparison was completed for the 2021 traffic counts commissioned and the 2017 counts obtained from the County for County Road 18 at the north end of Mansfield and the 2019 counts obtained for County Road 17, 250 metres east of County Road 18.

To determine the equivalent 2021 traffic volumes from the 2017 and 2019 counts, for accurate comparison to the 2021 counts, the background traffic growth rate noted in Section 2.5 was applied to the 2017 and 2019 counts. Based on a comparison of the 2021 counts and the equivalent 2021 counts, the 2021 traffic volumes at the study area intersections were increased by 58% for County Road 18 and 14% for County Road 17 and $10^{\text {th }}$ Sideroad to account for COVID-19 restrictions.

2.6.1.2 County Road 17 / Thomson Trail

The eastbound and westbound through traffic volumes on County Road 17 at this intersection were estimated based on the traffic volumes calculated in Section 2.6.1.1.

The traffic volumes entering and exiting Thomson Trail intersection have been calculated based on the ITE Trip Generation Manual. The following ITE land uses have been applied to estimate the traffic from the existing Thomson Trail residential area:

- ITE land use 210 (Single-Family Detached Housing) - General Urban / Suburban Setting.

The estimated trip generation of the existing Thomson Trail residential area is illustrated below in Table 4. The AM and PM peak traffic generation for the existing Thomson Trail residential area is not expected to exactly align with the AM and PM peak hour in the traffic counts; consequently, we have applied the peak hour of adjacent street traffic values provided in the ITE Trip Generation Manual.

Table 4 - Estimated Traffic Generation - Thomson Trail Residential Area

Land Use	Size	AM Peak Hour			PM Peak Hour		
		IN	OUT	TOTAL	IN	OUT	TOTAL
Single-Family Detached Housing ITE Land Use: 210	60 units* *	12	35	47	39	23	62

*There are 60 residential units on Thomson Trail and Sommerville Crescent which only have access to the Township and County road network via Thomson Trail

The distribution of traffic for the existing Thomson Trail residential area has been calculated based on the 2016 Transportation Tomorrow Survey [TTS] data for traffic zone 8411 retrieved using the TTS Internet Data Retrieval System [IDRS] (output attached as Appendix F). TTS data provides historical origin and destination work trip percentages for specific areas within the County and the Greater Toronto and Hamilton Area [GTHA].

Traffic distribution for the trips generated by the Thompson Trail residential area during the AM and PM peak hour is expected to generally follow commuter travel patterns. Our analysis is based on egress traffic during the AM peak hour. Logically, the distribution of ingress traffic will follow the inverse of the exiting traffic distribution. For each of the individual areas identified in the TTS data, we have selected the probable route of travel, assuming that people will select their route primarily based on travel time.

The distribution of traffic for the existing Thomson Trail residential area is illustrated in Table 5 using the methodology outlined above.

Table 5 - Thomson Trail Residential Area Traffic Distribution

Travel Direction (to/from)	Percentage of Total Traffic Generation
West via 10 th Sideroad	11%
East via County Road 17	23%
South via County Road 18	59%
North via County Road 18	$\mathbf{7 \%}$
Total	$\mathbf{1 0 0 \%}$

2.6.1.3 Existing (2024) Traffic Volumes

The 2024 existing AM and PM peak hour traffic volumes in the study area are established based on the conducted traffic counts, adjusted to reflect the annual background growth rate noted in Section 2.5, COVID-19 adjustment noted in Section 2.6.1.1., in addition to the adjacent development traffic noted in Section 2.4.

Figure 4 illustrates the existing (2024) AM and PM peak hour traffic volumes within the study area.

2.7 Horizon Year Traffic Volumes

The background traffic growth rate discussed in Section 2.5 has been applied to the existing traffic volumes to estimate the background (2026 and 2031) horizon year traffic volumes.

Figures 5 and 6 illustrate the background (2026 and 2031) horizon year AM and PM peak hour traffic volumes in the study area.

Figure 4 - Existing (2024) Traffic Volumes

Figure 5 - Background (2026) Traffic Volumes

Figure 6 - Background (2031) Traffic Volumes

3 Intersection Operation without Proposed Development

3.1 Introduction

Existing year operational conditions were established to determine how the street network within the study area is currently functioning without the proposed development. This provides a base case scenario to compare with future development scenarios. Traffic operations within the study area were evaluated using the 2024 traffic volumes with the existing road configuration and traffic control. The intersection performance was measured using the traffic analysis software, Synchro 11, a deterministic model that employs Highway Capacity Manual and Intersection Capacity Utilization methodologies for analyzing intersection operations. These procedures are accepted by provincial and municipal agencies throughout North America.

Synchro 11 enables the study area to be graphically defined in terms of streets and intersections, along with their geometric and traffic control characteristics. The user is able to evaluate both signalized and
unsignalized intersections in relation to each other, thus not only providing level of service for the individual intersections, but also enabling an assessment of the impact the various intersections in a network have on each other in terms of spacing, traffic congestion, delay, and queuing.

3.2 Intersection Capacity Analysis Criteria

Individual turning movements with a volume-to-capacity [V/C] ratio of 0.85 or greater are considered to be critical movements and have been highlighted in the LOS tables.

The intersection operations were also evaluated in terms of the LOS. LOS is a common measure of the quality of performance at an intersection and is defined in terms of vehicular delay. This delay includes deceleration delay, queue move-up time, stopped delay, and acceleration delay. LOS is expressed on a scale of A through F, where LOS A represents very little delay (i.e. less than 10 seconds per vehicle) and LOS F represents very high delay (i.e. greater than 50 seconds per vehicle for a stop sign controlled intersection and greater than 80 seconds per vehicle for a signalized intersection).

The LOS criteria for signalized and stop sign controlled intersections are shown in Table 6. A description of traffic performance characteristics is included for each LOS.

Table 6 - Level of Service Criteria for Intersections

LOS	LOS Description	Control Delay (seconds per vehicle)	
		Signalized Intersections	Stop Controlled Intersections
A	Very low delay; most vehicles do not stop (Excellent)	less than 10.0	less than 10.0
B	Higher delay; more vehicles stop (Very Good)	between 10.0 and 20.0	between 10.0 and 15.0
C	Higher level of congestion; number of vehicles stopping is significant, although many still pass through intersection without stopping (Good)	between 20.0 and 35.0	between 15.0 and 25.0
D	Congestion becomes noticeable; vehicles must sometimes wait through more than one red light; many vehicles stop (Satisfactory)	between 35.0 and 55.0	between 25.0 and 35.0
E	Vehicles must often wait through more than one red light; considered by many agencies to be the limit of acceptable delay	between 55.0 and 80.0	between 35.0 and 50.0
F	This level is considered to be unacceptable to most drivers; occurs when arrival flow rates exceed the capacity of the intersection (Unacceptable)	greater than 80.0	greater than 50.0

3.3 Existing (2024) Intersection Operation

The results of the LOS analysis under existing (2024) traffic volumes during the AM and PM peak hour can be found below in Table 7. Existing intersection geometry and traffic control have been utilized for this scenario. Detailed output of the Synchro analysis can be found in Appendix C.

Table 7 - Existing (2024) LOS

Location (N-S Street / E-W Street)	AM Peak Hour			PM Peak Hour		
	V/C	Delay (s)	LOS	V/C	Delay (s)	LOS
County Road 18 / County Road 17 (signalized)	0.34	8.6	A	0.51	9.9	A
	EB	0.43	23.5	C	0.38	21.2
C						
WB	0.41	23.2	C	0.40	21.2	C
	NB	0.24	4.3	A	0.54	7.8
A						
County Road 17 / Thomson Trail						
(unsignalized)	SB	0.33	4.8	A	0.48	7.2
A						

The results of the LOS analysis indicate that all intersections are operating within the typical design limits noted in Section 3.2.

An analysis was completed for left turn movements at the unsignalized study area intersections, based on the criteria outlined in Appendix 9A of the Ontario Ministry of Transportation Design Supplement for TAC Geometric Design Guide for Canadian Roads June 2017 [MTO DS]. Based on the MTO criteria, auxiliary left turn lanes are not warranted (results are provided in Appendix D).

A review of the need for an auxiliary right turn lane at the unsignalized study area intersections was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, an auxiliary right turn lane is not recommended.

Based on the Ontario Traffic Manual Book 12 Signal Justification, traffic signals are not warranted at the unsignalized study area intersections (results are provided in Appendix E).

No infrastructure improvements are recommended within the study area.

3.4 Background (2026) Intersection Operation

The results of the LOS analysis under background (2026) traffic volumes during the AM and PM peak hour can be found below in Table 8. Existing intersection geometry and traffic control have been utilized for this scenario. Detailed output of the Synchro analysis can be found in Appendix F.

Table 8 - Background (2026) LOS

Location (N-S Street / E-W Street)	AM Peak Hour			PM Peak Hour		
	V/C	Delay (s)	LOS	V/C	Delay (s)	LOS
County Road 18 / County Road 17 (signalized)	0.38	8.7	A	0.57	10.6	B
EB	0.45	23.3	C	0.39	21.2	C
WB	0.43	23.2	C	0.43	21.4	C
NB	0.26	4.5	A	0.60	8.8	A
SB	0.37	5.2	A	0.53	8.0	A
County Road 17 / Thomson Trail (unsignalized)	-	1.9	A	-	1.2	A
NB	0.04	9.4	A	0.03	9.8	A

The results of the LOS analysis indicate that all intersections are operating within the typical design limits noted in Section 3.2.

An analysis was completed for left turn movements at the unsignalized study area intersections, based on the criteria outlined in Appendix 9A of the MTO DS. Based on the MTO criteria, auxiliary left turn lanes are not warranted (results are provided in Appendix D).

A review of the need for an auxiliary right turn lane at the unsignalized study area intersections was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, an auxiliary right turn lane is not recommended.

Based on the Ontario Traffic Manual Book 12 Signal Justification, traffic signals are not warranted at the unsignalized study area intersections (results are provided in Appendix E).

No infrastructure improvements are recommended within the study area.

3.5 Background (2031) Intersection Operation

The results of the LOS analysis under background (2031) traffic volumes during the AM and PM peak hour can be found below in Table 9. Existing intersection geometry and traffic control have been utilized for this scenario. Detailed output of the Synchro analysis can be found in Appendix F.

Table 9 - Background (2031) LOS

Location (N-S Street / E-W Street)	AM Peak Hour			PM Peak Hour		
	V/C	Delay (s)	LOS	V/C	Delay (s)	LOS
County Road 18 / County Road 17 (signalized)	0.47	9.7	A	0.72	14.2	B
	EB	0.39	21.1	C	0.44	21.4
C						
WB	0.39	21.2	C	0.51	21.8	C
NB	0.35	6.0	A	0.77	13.4	B
County Road 17 / Thomson Trail (unsignalized)	SB	0.49	7.2	A	0.70	11.8
B						

The results of the LOS analysis indicate that all intersections are operating within the typical design limits noted in Section 3.2.

An analysis was completed for left turn movements at the unsignalized study area intersections, based on the criteria outlined in Appendix 9A of the MTO DS. Based on the MTO criteria, auxiliary left turn lanes are not warranted (results are provided in Appendix D).

A review of the need for an auxiliary right turn lane at the unsignalized study area intersections was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, an auxiliary right turn lane is not recommended.

Based on the Ontario Traffic Manual Book 12 Signal Justification, traffic signals are not warranted at the unsignalized study area intersections (results are provided in Appendix E).

No infrastructure improvements are recommended within the study area.

4 Proposed Development Traffic Generation and Assignment

4.1 Traffic Generation

The traffic generation for the proposed development has been based on the ITE Trip Generation Manual. The following ITE land uses have been applied to estimate the traffic from the proposed development:

- ITE land use 210 (Single-Family Detached Housing) - General Urban / Suburban Setting.

The estimated trip generation of the proposed development is illustrated below in Table 10. The AM and PM peak traffic generation for the proposed development is not expected to exactly align with the AM and PM peak hour in the traffic counts; consequently, we have applied the peak hour of adjacent street traffic values provided in the ITE Trip Generation Manual.

Table 10 - Estimated Traffic Generation of Proposed Development

Land Use	Size	AM Peak Hour			PM Peak Hour		
		IN	OUT	TOTAL	IN	OUT	TOTAL
Single-Family Detached Housing ITE Land Use: 210		14	42	56	46	27	73

*Includes the proposed 43 single family detached units and 28 semi-detached units.
No transportation modal split has been applied to the above-noted traffic generation calculation.

4.2 Traffic Assignment

For the purposes of this study, it has been assumed that all traffic generated by the proposed development will be new traffic and would not be in the study area if the development was not constructed.

The ITE data provides the anticipated percentage of new traffic entering and exiting during the peak hour.

The distribution of traffic for the proposed development has been calculated based on the 2016 TTS data for traffic zone 8411 retrieved using the TTS IDRS (output attached as Appendix F). TTS data provides historical origin and destination work trip percentages for specific areas within the County and the GTHA.

Traffic distribution for the trips generated by the subject site during the AM and PM peak hour is expected to generally follow commuter travel patterns. Our analysis is based on egress traffic during the AM peak hour. Logically, the distribution of ingress traffic will follow the inverse of the exiting traffic distribution. For each of the individual areas identified in the TTS data, we have selected the probable route of travel, assuming that people will select their route primarily based on travel time.

The distribution of traffic for the proposed development is illustrated in Table 11 using the methodology outlined above.

Table 11 - Proposed Development Traffic Distribution

Travel Direction (to/from)	Percentage of Total Traffic Generation
West via 10 $0^{\text {th }}$ Sideroad	14%
East via County Road 17	16%
South via County Road 18	61%
North via County Road 18	9%
Total	$\mathbf{1 0 0 \%}$

Using the traffic distributions pattern noted above, the traffic assignment for the proposed development was calculated for the AM and PM peak hour and is illustrated in Figure 7.

4.3 Total Horizon Year Traffic Volumes with the Proposed Development

For the total (2026 and 2031) horizon year traffic volumes, the proposed development traffic was added to the background (2026 and 2031) traffic volumes. The resulting total (2026 and 2031) horizon year traffic volumes for the AM and PM peak hour are illustrated in Figures $\mathbf{8}$ and 9.

Figure 7 - Proposed Development Traffic Assignment

Figure 8 -Total (2026) Traffic Volumes

Figure 9 -Total (2031) Traffic Volumes

5 Intersection
 Operation
 with
 Proposed Development

5.1 Total (2026) Intersection Operation

The results of the LOS analysis under total (2026) traffic volumes during the AM and PM peak hour can be found below in Table 12. Existing intersection geometry and traffic control have been utilized for this scenario. Detailed output of the Synchro analysis can be found in Appendix G.

Table 12 - Total (2026) LOS

Location (N-S Street / E-W Street)	AM Peak Hour			PM Peak Hour		
	V/C	Delay (s)	LOS	V/C	Delay (s)	LOS
County Road 18 / County Road 17 (signalized)	0.40	9.3	A	0.60	11.2	B
EB	0.33	20.7	C	0.40	21.2	C
WB	0.40	21.3	C	0.47	21.7	C
NB	0.29	5.5	A	0.63	9.5	A
SB	0.40	6.4	A	0.55	8.4	A
County Road $17 /$ Thomson Trail \& Street ' C ' (unsignalized)	-	2.9	A	-	2.0	A
NB	0.05	9.8	A	0.04	10.5	B
SB	0.03	9.1	A	0.02	9.6	A
County Road 18 / Street ' A ' (unsignalized)	-	0.4	A	-	0.3	A
WB	0.05	13.6	B	0.06	21.0	C

The results of the LOS analysis indicate that all intersections are operating within the typical design limits noted in Section 3.2.

An analysis was completed for left turn movements at the unsignalized study area intersections, based on the criteria outlined in Appendix 9A of the MTO DS. Based on the MTO criteria, auxiliary left turn lanes are not warranted (results are provided in Appendix D).

A review of the need for an auxiliary right turn lane at the unsignalized study area intersections was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, an auxiliary right turn lane is not recommended.

Based on the Ontario Traffic Manual Book 12 Signal Justification, traffic signals are not warranted at the unsignalized study area intersections (results are provided in Appendix E).

No infrastructure improvements are recommended within the study area

5.2 Total (2031) Intersection Operation

The results of the LOS analysis under total (2031) traffic volumes during the AM and PM peak hour can be found below in Table 13. Existing intersection geometry and traffic control have been utilized for this scenario. Detailed output of the Synchro analysis can be found in Appendix G.

Table 13 - Total (2031) LOS

Location (N-S Street / E-W Street)	AM Peak Hour			PM Peak Hour		
	V/C	Delay (s)	LOS	V/C	Delay (s)	LOS
County Road 18 / County Road 17 (signalized)	0.50	10.2	B	0.75	15.6	B
EB	0.38	20.9	C	0.46	21.4	C
WB	0.47	21.8	C	0.54	22.3	C
NB	0.36	6.3	A	0.81	15.4	B
SB	0.51	7.7	A	0.73	12.8	B
County Road $17 /$ Thomson Trail \& Street ' C ' (unsignalized)	-	2.6	A	-	1.8	A
NB	0.05	10.0	B	0.04	10.9	B
SB	0.03	9.2	A	0.02	9.8	A
County Road 18 / Street ' A ' (unsignalized)	-	0.4	A	-	0.4	A
WB	0.06	15.9	C	0.10	34.8	D

The results of the LOS analysis indicate that all intersections are operating within the typical design limits noted in Section 3.2. The egress movement at the Street A connection operates at a satisfactory level of service (LOS D). It is noted that during the same peak period, the alternate access point (Street C), provides an excellent level of service (LOS A) with minor delays. Consequently, should the delays at Street A become an issue, motorists will have the opportunity to divert to a secondary access point.

An analysis was completed for left turn movements at the unsignalized study area intersections, based on the criteria outlined in Appendix 9A of the MTO DS. Based on the MTO criteria, auxiliary left turn lanes are not warranted (results are provided in Appendix D).

A review of the need for an auxiliary right turn lane at the unsignalized study area intersections was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, an auxiliary right turn lane is not recommended.

Based on the Ontario Traffic Manual Book 12 Signal Justification, traffic signals are not warranted at the unsignalized study area intersections (results are provided in Appendix E).

No infrastructure improvements are recommended within the study area.

5.3 Sight Distance Review

A review of the available sight distance for the proposed municipal roads within the study area was completed as part of this analysis.

The sight distance south (greater than 200 metres) of Street ' A ' at County Road 18 is greater than the minimum visibility requirements identified in the County's Entrance Policy 5-3-17 [County Entrance Policy] (160 metres for commercial entrance on a road with a posted speed limit of $50 \mathrm{~km} / \mathrm{h}$).

The sight stance north of Street 'A' at County Road 18 does not meet the minimum visibility requirements identified in the County Entrance Policy. Consequently, County Road 18 will need to be reconstructed to improve the vertical curve and sight distance. Preliminary plan and profile drawings are provided in Appendix H . The drawing illustrate the minimum visibility requirements identified in the County Entrance Policy can be met from Street ' A ' with the proposed road reconstruction. The decision point elevation on Street " A " and at the adjacent driveway was assumed to be 0.25 metres below the centerline of County Road 18 , which is a conservative approach.

A detailed design for the road reconstruction will be completed as part of the detailed engineering design, however, the vertical curve values used in the preliminary design meet the minimum TAC requirements for a posted speed of $50 \mathrm{~km} / \mathrm{h}$. Depending on the final design configuration, the existing $50 \mathrm{~km} / \mathrm{h}$ zone on County Road 18 may need to be extended slightly to the north.

The sight distance east (greater than 200 metres) and west (greater than 200 metres) of the Street ' C ' at County Road 17 is greater than the minimum visibility requirements identified in the County Entrance Policy (160 metres for commercial entrance on a road with a posted speed limit of $50 \mathrm{~km} / \mathrm{h}$).

With the proposed road reconstruction of County Road 18, the sight distance for the proposed municipal roads within the study area are suitable for their intended use.

5.4 Site Access

Street ' C ' at County Road 17 will operate efficiently as full-movement accesses, with two-way stop control for the northbound and southbound movements. No lane improvements are recommended on County Road 17 at Street ' C '. A single northbound and southbound lane on Street ' C ' will provide the necessary capacity to service the proposed development.

Street ' A ' at the County Road 18 will operate efficiently as a full-movement access, with one-way stop control for westbound movements. No lane improvements are recommended on County Road 18 at Street ' A '. A single westbound lane on Street ' A ' will provide the necessary capacity to service the proposed development.

The proposed spacing (measured edge of driveway to edge of road) between the Street 'C' \& Thomson Trail / County Road 17 intersection and the existing driveways to the east and west are in excess of the suggested minimum corner clearance requirements for a intersections as identified in the TAC Guidelines - Figure 8.8.2 (Suggested Minimum Corner Clearances to Accesses or Public Lanes at Major Intersections) - 25 metres for unsignalized condition.

The proposed spacing (approximately 135 meters, measured edge to edge of road) between the Street 'A' / County Road 18 intersection and the County Road 17 / County Road 18 intersection is in excess of the suggested minimum corner clearance requirements for an intersection as identified in the TAC Guidelines - Figure 8.8.2 (Suggested Minimum Corner Clearances to Accesses or Public Lanes at Major Intersections) - 70 metres for signalized condition.

The proposed spacing (measured edge of driveway to edge of road) between the Street ' A ' / County Road 18 intersection and the existing driveway to the south and between the Street 'A' / County Road 18 intersection and the existing driveway to the north are in excess of the suggested minimum corner clearance requirements for an intersection as identified in the TAC Guidelines - Figure 8.8.2 (Suggested Minimum Corner Clearances to Accesses or Public Lanes at Major Intersections) - 25 metres and 35 metres for unsignalized condition.

Furthermore, the anticipated $95^{\text {th }}$ percentile queue length for the southbound movements at the County Road 17 / County Road 18 intersection (56 and 112 meters during the AM and PM peak hours for the critical total (2031) scenario) is less than the proposed spacing (measured edge to edge of road) between the Street 'A' / County Road 18 intersection and the County Road 17 / County Road 18 intersection.

6 Summary

2735528 Ontario Inc. retained JD Engineering to prepare this traffic impact study in support of the proposed development, located in the northeast quadrant of the County Road 18 / County Road 17 intersection in the Township of Mulmur [Township], County of Dufferin [County]. The proposed Site Plan is shown in Appendix A. This chapter summarizes the conclusions and recommendations from the study.

The proposed residential development is anticipated to consist of 43 single family detached units, and 28 semi-detached units.

1. The proposed development is expected to generate a total of 56 AM and 73 PM peak hour trips.
2. Detailed turning movement traffic and pedestrian counts for the County Road 18 / County Road 17 intersection were commissioned by JD Engineering.
3. An intersection operation analysis was completed at the study area intersections, using the existing (2024) and background (2026 and 2031) traffic volumes, without the proposed development traffic. This enabled a review of existing and future traffic deficiencies that would be present without the influence of the proposed development. No geometric lane improvements or traffic signal improvements are recommended within the study area.
4. An estimate of the amount of traffic that would be generated by the proposed development was prepared and assigned to the study area streets and intersections.
5. An intersection operation analysis was completed under total (2026 and 2031) traffic volumes with the proposed development operational at the study area intersections. No geometric lane improvements or traffic signal improvements are recommended within the study area.
6. Street ' A ' will operate efficiently as full-movement accesses, with one-way stop control for the westbound movements. A single eastbound and westbound lane at Street ' A ' will provide the necessary capacity to service the proposed development.
7. Street ' C ' will operate efficiently as full-movement access, with two-way stop control for the northbound and southbound movements. A single northbound and southbound lane at Street ' C ' will provide the necessary capacity to service the proposed development.
8. County Road 18 will need to be reconstructed to improve the vertical curve and sight distance. Preliminary plan and profile drawings are provided in Appendix H .
9. With the above-noted road reconstruction, the sight distance available for Street ' A ' and Street ' C ' are suitable for their intended use.
10. In summary, the proposed development will not cause any operational issues and will not add a notable delay or congestion to the local roadway network.

Appendix A Site Plan

Appendix B Traffic Count Data

Accu-Traffic Inc.

Comments

Accu-Traffic Inc.

Comments

Accu-Traffic Inc.

Total Count Diagram

Comments

Accu-Traffic Inc
Traffic Monitoring \& Data Analysis

Appendix C -
 Synchro Analysis Output Existing Traffic Volumes

	4	\rightarrow	7		4	\dagger		$\frac{1}{\dagger}$
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		\uparrow		\uparrow		*		*
Traffic Volume (vph)	21	37	20	32	7	206	32	279
Future Volume (vph)	21	37	20	32	7	206	32	279
Lane Group Flow (vph)	0	76	0	96	0	258	0	376
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA
Protected Phases		4		8		2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	8	8	2	2	6	6
Switch Phase								
Minimum Initial (s)	7.0	7.0	7.0	7.0	25.0	25.0	25.0	25.0
Minimum Split (s)	21.0	21.0	21.0	21.0	32.0	32.0	32.0	32.0
Total Split (s)	21.0	21.0	21.0	21.0	35.0	35.0	35.0	35.0
Total Split (\%)	37.5\%	37.5\%	37.5\%	37.5\%	62.5\%	62.5\%	62.5\%	62.5\%
Yellow Time (s)	4.0	4.0	4.0	4.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0		0.0		0.0		0.0
Total Lost Time (s)		6.0		6.0		7.0		7.0
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode	None	None	None	None	Max	Max	Max	Max
v/c Ratio		0.28		0.33		0.21		0.29
Control Delay		18.9		15.7		5.2		5.6
Queue Delay		0.0		0.0		0.0		0.0
Total Delay		18.9		15.7		5.2		5.6
Queue Length 50th (m)		5.4		4.9		9.4		14.9
Queue Length 95th (m)		14.0		14.3		21.0		31.1
Internal Link Dist (m)		439.9		535.3		514.2		133.5
Turn Bay Length (m)								
Base Capacity (vph)		506		520		1220		1297
Starvation Cap Reductn		0		0		0		0
Spillback Cap Reductn		0		0		0		0
Storage Cap Reductn		0		0		0		0
Reduced v/c Ratio		0.15		0.18		0.21		0.29
Intersection Summary								
Cycle Length: 56								
Actuated Cycle Length: 48.3								
Natural Cycle: 55								
Control Type: Semi Act-Uncoord								

Splits and Phases: 6: Airport Rd (County Rd 18) \& 10th Sideroad/County Rd 17

c Critical Lane Group

	4	\rightarrow	\checkmark		4	\dagger		\dagger
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		\uparrow		*		\&		*
Traffic Volume (vph)	31	33	19	57	31	433	48	346
Future Volume (vph)	31	33	19	57	31	433	48	346
Lane Group Flow (vph)	0	95	0	119	0	577	0	465
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA
Protected Phases		4		8		2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	8	8	2	2	6	6
Switch Phase								
Minimum Initial (s)	7.0	7.0	7.0	7.0	25.0	25.0	25.0	25.0
Minimum Split (s)	21.0	21.0	21.0	21.0	32.0	32.0	32.0	32.0
Total Split (s)	21.0	21.0	21.0	21.0	35.0	35.0	35.0	35.0
Total Split (\%)	37.5\%	37.5\%	37.5\%	37.5\%	62.5\%	62.5\%	62.5\%	62.5\%
Yellow Time (s)	4.0	4.0	4.0	4.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0		0.0		0.0		0.0
Total Lost Time (s)		6.0		6.0		7.0		7.0
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode	None	None	None	None	Max	Max	Max	Max
v/c Ratio		0.36		0.39		0.51		0.45
Control Delay		18.5		17.9		8.7		8.2
Queue Delay		0.0		0.0		0.0		0.0
Total Delay		18.5		17.9		8.7		8.2
Queue Length 50th (m)		6.0		7.1		27.6		21.3
Queue Length 95th (m)		15.9		18.1		58.5		46.3
Internal Link Dist (m)		439.9		535.3		514.2		133.5
Turn Bay Length (m)								
Base Capacity (vph)		459		525		1138		1040
Starvation Cap Reductn		0		0		0		0
Spillback Cap Reductn		0		0		0		0
Storage Cap Reductn		0		0		0		0
Reduced v/c Ratio		0.21		0.23		0.51		0.45
Intersection Summary								
Cycle Length: 56								
Actuated Cycle Length: 49.9								
Natural Cycle: 55								
Control Type: Semi Act-Uncoord								

Splits and Phases: 6: Airport Rd (County Rd 18) \& 10th Sideroad/County Rd 17

Appendix D MTO Left Turn Warrant Analysis

Exhibit 9A-10

Exhibit 9A-10

————— TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTED FLOW
RAFFIC SIGNALS MAY BE WARRANTED IN
"FREE FLOW" URBAN AREAS
Street 'C' \& Thomson Trail / County Road 17
Total (2031) - Westbound
PM Peak Hour (Critical Scenario)

Exhibit 9A-10

Appendix E-
 OTM Signal Justification Sheets

Justification No. 7-2031 Total Traffic (Critical Case)

Street 'A' / County Road 18

Justification	Description		Compliance			Signal Warrant	Underground Provisions Warrant
			Sectional		Entire \%		
		Rest. Flow	Numerical	\%			
1. Minimum Vehicluar Volume	A. Vehicle volume, all aproaches (average hour)	720	525	73\%	2\%	NO	NO
	B. Vehicle volume, along minor streets (average hour)	255	9	3\%		NO	NO
2. Delay to cross traffic	A. Vehicle volume, major street (average hour)	720	511	71\%	6\%	NO	NO
	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	75	7	9\%		NO	NO

Justification No. 7-2031 Total Traffic (Critical Case)

Street 'C' \& Thomson Trail / County Road 17

Justification	Description		Compliance			Signal Warrant	Underground Provisions Warrant
			Sectional		Entire \%		
		Rest. Flow	Numerical	\%			
1. Minimum Vehicluar Volume	A. Vehicle volume, all aproaches (average hour)	720	143	20\%	11\%	NO	NO
	B. Vehicle volume, along minor streets (average hour)	170	23	14\%		NO	NO
	A. Vehicle volume, major street (average hour)	720	107	15\%	12\%	NO	NO
2. Delay to cross traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	75	14	19\%		NO	NO

Appendix F Synchro Analysis Output Background Traffic Volumes

Cycle Length: 56
Actuated Cycle Length: 48
Natural Cycle: 55
Control Type: Semi Act-Uncoord

Splits and Phases: 6: Airport Rd (County Rd 18) \& 10th Sideroad/County Rd 17

	\rightarrow	\geqslant	7	\Perp	4	P	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	F			\uparrow	*		
Traffic Volume (veh/h)	76	9	3	56	27	8	
Future Volume (Veh/h)	76	9	3	56	27	8	
Sign Control	Free			Free	Stop		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.87	0.87	0.87	0.87	0.92	0.92	
Hourly flow rate (vph)	87	10	3	64	29	9	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC , conflicting volume			97		162	92	
$\mathrm{vC1}$, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol			97		162	92	
tC , single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free \%			100		96	99	
cM capacity (veh/h)			1496		827	965	
Direction, Lane \#	EB 1	WB 1	NB 1				
Volume Total	97	67	38				
Volume Left	0	3	29				
Volume Right	10	0	9				
cSH	1700	1496	856				
Volume to Capacity	0.06	0.00	0.04				
Queue Length 95th (m)	0.0	0.0	1.1				
Control Delay (s)	0.0	0.3	9.4				
Lane LOS		A	A				
Approach Delay (s)	0.0	0.3	9.4				
Approach LOS			A				
Intersection Summary							
Average Delay			1.9				
Intersection Capacity Utilization			15.4\%	ICU Level of Service			A
Analysis Period (min)			15				

Cycle Length: 56
Actuated Cycle Length: 50.1
Natural Cycle: 55
Control Type: Semi Act-Uncoord

Splits and Phases: 6: Airport Rd (County Rd 18) \& 10th Sideroad/County Rd 17

Cycle Length: 56
Actuated Cycle Length: 50
Natural Cycle: 55
Control Type: Semi Act-Uncoord

Splits and Phases: 6: Airport Rd (County Rd 18) \& 10th Sideroad/County Rd 17

Cycle Length: 56
Actuated Cycle Length: 50.9
Natural Cycle: 60
Control Type: Semi Act-Uncoord
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 6: Airport Rd (County Rd 18) \& 10th Sideroad/County Rd 17

Appendix G Synchro Analysis Output Total Traffic Volumes

	4	\rightarrow	\checkmark		4	\dagger	(\dagger
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		\uparrow		*		\&		*
Traffic Volume (vph)	23	41	33	37	7	230	35	320
Future Volume (vph)	23	41	33	37	7	230	35	320
Lane Group Flow (vph)	0	83	0	119	0	290	0	431
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA
Protected Phases		4		8		2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	8	8	2	2	6	6
Switch Phase								
Minimum Initial (s)	7.0	7.0	7.0	7.0	25.0	25.0	25.0	25.0
Minimum Split (s)	21.0	21.0	21.0	21.0	32.0	32.0	32.0	32.0
Total Split (s)	21.0	21.0	21.0	21.0	35.0	35.0	35.0	35.0
Total Split (\%)	37.5\%	37.5\%	37.5\%	37.5\%	62.5\%	62.5\%	62.5\%	62.5\%
Yellow Time (s)	4.0	4.0	4.0	4.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0		0.0		0.0		0.0
Total Lost Time (s)		6.0		6.0		7.0		7.0
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode	None	None	None	None	Max	Max	Max	Max
v/c Ratio		0.29		0.40		0.27		0.38
Control Delay		18.8		17.6		6.5		7.4
Queue Delay		0.0		0.0		0.0		0.0
Total Delay		18.8		17.6		6.5		7.4
Queue Length 50th (m)		6.0		6.7		11.3		18.6
Queue Length 95th (m)		14.8		17.3		25.4		39.4
Internal Link Dist (m)		439.9		535.3		514.2		133.5
Turn Bay Length (m)								
Base Capacity (vph)		496		491		1073		1136
Starvation Cap Reductn		0		0		0		0
Spillback Cap Reductn		0		0		0		0
Storage Cap Reductn		0		0		0		0
Reduced v/c Ratio		0.17		0.24		0.27		0.38
Intersection Summary								
Cycle Length: 56								
Actuated Cycle Length: 50								
Natural Cycle: 55								
Control Type: Semi Act-Uncoord								

Splits and Phases: 6: Airport Rd (County Rd 18) \& 10th Sideroad/County Rd 17

	4	\rightarrow	\checkmark	7		4	4	\dagger	\%		\dagger	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			$\$$			\&			*	
Traffic Volume (veh/h)	5	76	9	3	56	2	27	0	8	7	0	14
Future Volume (Veh/h)	5	76	9	3	56	2	27	0	8	7	0	14
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Hourly flow rate (vph)	6	87	10	3	64	2	31	0	9	8	0	16
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	66			97			191	176	92	184	180	65
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	66			97			191	176	92	184	180	65
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			100			96	100	99	99	100	98
cM capacity (veh/h)	1536			1496			753	713	965	766	710	999
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	103	69	40	24								
Volume Left	6	3	31	8								
Volume Right	10	2	9	16								
cSH	1536	1496	792	907								
Volume to Capacity	0.00	0.00	0.05	0.03								
Queue Length 95th (m)	0.1	0.0	1.3	0.7								
Control Delay (s)	0.5	0.3	9.8	9.1								
Lane LOS	A	A	A	A								
Approach Delay (s)	0.5	0.3	9.8	9.1								
Approach LOS			A	A								
Intersection Summary												
Average Delay			2.9									
Intersection Capacity Utilization			17.1\%		CU Level	Service			A			
Analysis Period (min)			15									

	4	\rightarrow	\checkmark		4	\dagger		\dagger
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		\uparrow		*		\&		*
Traffic Volume (vph)	36	38	28	63	33	489	52	388
Future Volume (vph)	36	38	28	63	33	489	52	388
Lane Group Flow (vph)	0	108	0	139	0	664	0	520
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA
Protected Phases		4		8		2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	8	8	2	2	6	6
Switch Phase								
Minimum Initial (s)	7.0	7.0	7.0	7.0	25.0	25.0	25.0	25.0
Minimum Split (s)	21.0	21.0	21.0	21.0	32.0	32.0	32.0	32.0
Total Split (s)	21.0	21.0	21.0	21.0	35.0	35.0	35.0	35.0
Total Split (\%)	37.5\%	37.5\%	37.5\%	37.5\%	62.5\%	62.5\%	62.5\%	62.5\%
Yellow Time (s)	4.0	4.0	4.0	4.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0		0.0		0.0		0.0
Total Lost Time (s)		6.0		6.0		7.0		7.0
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode	None	None	None	None	Max	Max	Max	Max
v/c Ratio		0.38		0.44		0.59		0.51
Control Delay		18.5		19.2		10.8		9.6
Queue Delay		0.0		0.0		0.0		0.0
Total Delay		18.5		19.2		10.8		9.6
Queue Length 50th (m)		6.9		9.1		36.3		26.6
Queue Length 95th (m)		17.3		21.1		78.0		58.5
Internal Link Dist (m)		439.9		535.3		514.2		133.5
Turn Bay Length (m)								
Base Capacity (vph)		464		506		1120		1015
Starvation Cap Reductn		0		0		0		0
Spillback Cap Reductn		0		0		0		0
Storage Cap Reductn		0		0		0		0
Reduced v/c Ratio		0.23		0.27		0.59		0.51
Intersection Summary								
Cycle Length: 56								
Actuated Cycle Length: 50.5								
Natural Cycle: 60								
Control Type: Semi Act-Uncoord								

Splits and Phases: 6: Airport Rd (County Rd 18) \& 10th Sideroad/County Rd 17

	4	\rightarrow	\checkmark	7		4	4	9	7		$\frac{1}{\dagger}$	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\&			*			\&	
Traffic Volume (veh/h)	17	98	30	9	91	8	18	0	5	5	0	9
Future Volume (Veh/h)	17	98	30	9	91	8	18	0	5	5	0	9
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	19	111	34	10	103	9	20	0	6	6	0	10
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	112			145			304	298	128	300	310	108
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	112			145			304	298	128	300	310	108
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			97	100	99	99	100	99
cM capacity (veh/h)	1478			1437			632	602	922	639	592	946
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	164	122	26	16								
Volume Left	19	10	20	6								
Volume Right	34	9	6	10								
cSH	1478	1437	682	802								
Volume to Capacity	0.01	0.01	0.04	0.02								
Queue Length 95th (m)	0.3	0.2	1.0	0.5								
Control Delay (s)	1.0	0.7	10.5	9.6								
Lane LOS	A	A	B	A								
Approach Delay (s)	1.0	0.7	10.5	9.6								
Approach LOS			B	A								
Intersection Summary												
Average Delay			2.0									
Intersection Capacity Utilization			21.5\%		CU Level	Service			A			
Analysis Period (min)			15									

	4	\rightarrow	7		4	\dagger		$\frac{1}{\dagger}$
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		\uparrow		\uparrow		*		*
Traffic Volume (vph)	27	51	38	45	9	288	43	397
Future Volume (vph)	27	51	38	45	9	288	43	397
Lane Group Flow (vph)	0	103	0	143	0	362	0	530
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA
Protected Phases		4		8		2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	8	8	2	2	6	6
Switch Phase								
Minimum Initial (s)	7.0	7.0	7.0	7.0	25.0	25.0	25.0	25.0
Minimum Split (s)	21.0	21.0	21.0	21.0	32.0	32.0	32.0	32.0
Total Split (s)	21.0	21.0	21.0	21.0	35.0	35.0	35.0	35.0
Total Split (\%)	37.5\%	37.5\%	37.5\%	37.5\%	62.5\%	62.5\%	62.5\%	62.5\%
Yellow Time (s)	4.0	4.0	4.0	4.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0		0.0		0.0		0.0
Total Lost Time (s)		6.0		6.0		7.0		7.0
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode	None	None	None	None	Max	Max	Max	Max
v/c Ratio		0.33		0.46		0.34		0.48
Control Delay		18.9		18.3		7.4		8.9
Queue Delay		0.0		0.0		0.0		0.0
Total Delay		18.9		18.3		7.4		8.9
Queue Length 50th (m)		7.4		8.3		15.5		25.9
Queue Length 95th (m)		17.2		20.1		34.8		55.6
Internal Link Dist (m)		439.9		535.3		514.2		133.5
Turn Bay Length (m)								
Base Capacity (vph)		503		488		1060		1114
Starvation Cap Reductn		0		0		0		0
Spillback Cap Reductn		0		0		0		0
Storage Cap Reductn		0		0		0		0
Reduced v/c Ratio		0.20		0.29		0.34		0.48
Intersection Summary								
Cycle Length: 56								
Actuated Cycle Length: 50.5								
Natural Cycle: 55								
Control Type: Semi Act-Uncoord								

Splits and Phases: 6: Airport Rd (County Rd 18) \& 10th Sideroad/County Rd 17

	4	\rightarrow	\checkmark	7		4	4	\dagger	\%		\dagger	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			$\$$			\&			*	
Traffic Volume (veh/h)	5	93	9	3	69	2	27	0	8	7	0	14
Future Volume (Veh/h)	5	93	9	3	69	2	27	0	8	7	0	14
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Hourly flow rate (vph)	6	107	10	3	79	2	31	0	9	8	0	16
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	81			117			226	211	112	219	215	80
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	81			117			226	211	112	219	215	80
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			100			96	100	99	99	100	98
cM capacity (veh/h)	1517			1471			714	682	941	727	679	980
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	123	84	40	24								
Volume Left	6	3	31	8								
Volume Right	10	2	9	16								
cSH	1517	1471	755	878								
Volume to Capacity	0.00	0.00	0.05	0.03								
Queue Length 95th (m)	0.1	0.0	1.3	0.7								
Control Delay (s)	0.4	0.3	10.0	9.2								
Lane LOS	A	A	B	A								
Approach Delay (s)	0.4	0.3	10.0	9.2								
Approach LOS			B	A								
Intersection Summary												
Average Delay			2.6									
Intersection Capacity Utilization			18.1\%		CU Level	Service			A			
Analysis Period (min)			15									

Cycle Length: 56
Actuated Cycle Length: 51.4
Natural Cycle: 60
Control Type: Semi Act-Uncoord
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 6: Airport Rd (County Rd 18) \& 10th Sideroad/County Rd 17

	4	\rightarrow	\cdots	7		4	4	\dagger	p		\dagger	\pm
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\uparrow			\&			\&	
Traffic Volume (veh/h)	17	121	30	9	112	8	18	0	5	5	0	9
Future Volume (Veh/h)	17	121	30	9	112	8	18	0	5	5	0	9
Sign Control		Free		Free			Stop			Stop		
Grade	0\%			0\%			0\%			0\%		
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	19	138	34	10	127	9	20	0	6	6	0	10
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	136			172			354	349	155	350	362	132
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	136			172			354	349	155	350	362	132
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			97	100	99	99	100	99
cM capacity (veh/h)	1448			1405			585	563	891	591	554	918
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	191	146	26	16								
Volume Left	19	10	20	6								
Volume Right	34	9	6	10								
cSH	1448	1405	635	760								
Volume to Capacity	0.01	0.01	0.04	0.02								
Queue Length 95th (m)	0.3	0.2	1.0	0.5								
Control Delay (s)	0.8	0.6	10.9	9.8								
Lane LOS	A	A	B	A								
Approach Delay (s)	0.8	0.6	10.9	9.8								
Approach LOS			B	A								
Intersection Summary												
Average Delay			1.8									
Intersection Capacity Utilization			23.2\%		CU Level	Service			A			
Analysis Period (min)			15									

Appendix H Sight Distance Drawings

